

Advantage EDBC


 for CA-IDMS


Installation and Operations Guide

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is for
the end user’s informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of CA. This documentation is proprietary information of CA and protected by the
copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy. Only
authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of the
license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. Should the license terminate for any reason, it shall be the user’s responsibility to return to CA the reproduced
copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct or
indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user’s
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or
DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

 2001 Computer Associates International, Inc. (CA)

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

 Contents

Chapter 1: Introduction
In This Guide ...1-1
Audience...1-2
Conventions ...1-2

Chapter 2: Overview of EDBC for CA-IDMS
The EDBC Solution ...2-1
A Gateway Installation...2-2

The CA-IDMS Gateway...2-3
EDBC Server ...2-4
Ingres/Star ..2-5
Security System Support ...2-5
User Interfaces ..2-6
Structured Query Language (SQL)..2-6

Chapter 3: Gateway Function and Architecture
Gateway Functions and Structure ..3-1

Gateway Functions ..3-1
EDBC Architecture...3-2
Remote Access ..3-3

Communication Address Space..3-3
EDBC Address Space...3-3
CA-IDMS Address Space ..3-4

Local Access ...3-5
User Address Space ...3-6
EDBC Address Space...3-6
CA-IDMS Address Space ..3-7

Gateway System Catalogs..3-7

Contents iii

Chapter 4: Preparing for Installation
Before Beginning the Installation..4-1
Software Requirements ..4-2
Storage Requirements...4-3

Disk Storage..4-3
Virtual Storage Requirements..4-3
User Address Space ...4-4

Installer’s Requirements...4-4
Installer’s Access to Resources ..4-5
Installation Overview...4-6

Installation Summary ..4-6
Installing the Gateway ..4-6
Verifying Gateway Functionality ..4-7
Supporting Gateway Users...4-7

Chapter 5: Installing the Gateway
Installation Summary ...5-1

Installation Framework...5-3
Installation Expectations...5-4
The EDBC Product Tape ...5-4
Backing Up Previous Installation Datasets ..5-5

Allocating and Loading the Installation Datasets ..5-5
Creating JCL to Restore the Stage0 Jobstream ...5-5
Customizing the Stage0 Installation Jobstream...5-6
Gateway Datasets That Are Allocated and Restored..5-8

Customizing the Stage1 Input...5-9
IGWFJOB Statement: Specifying Jobcard Parameters ..5-9
IGWFUSER Statement: Specifying Initial Gateway Users ...5-11
IGWFINET Statement: Specifying EDBC Parameters ..5-12
IGWFIDMS Statement: Specifying CA-IDMS Gateway Parameters ..5-14
IGWFPSVR Statement: Specifying Protocol Server Parameters..5-21
IGWFPIPE Statement: Specifying CA-IDMS LU62 Interface Parameters..5-25
IGWFPIPE Statement: Specifying EXCI Interface Parameters ..5-28
IGWFBLD Statement: Specifying IIVP Sysgen Parameters ...5-30

The Stage1 Jobstream..5-32
Customizing and Executing the Stage1 Jobstream..5-32

Submitting the Stage2 Jobstream Jobs..5-34
Functions of Stage2 Jobs ...5-35

iv Installation and Operations Guide

Final Installation Procedures ...5-42
Completing the Installation ..5-42

Customizing the TSO Logon Procedure ..5-43
Verifying the Installation Functionality ...5-43

Chapter 6: Configuring the EDBC Server
Install and Configure Communication Interfaces ..6-1
SNA LU0 for OS/390..6-1

Requirements..6-2
Installation and Configuration...6-2
Starting and Stopping the SNA_LU0 Interface..6-2
Connecting from a Remote Client..6-3
SNA LU0 Abend Codes and Messages...6-3

SNA LU62 for OS/390..6-4
Requirements..6-4
Installation and Configuration...6-4
Starting and Stopping the SNA_LU62 Interface..6-4
Connecting from a Remote Client..6-5
SNA LU6.2 VTAM Logmode Entries ..6-5
Sense Code 08120007 and Possible Loop in VTAM ..6-6

KNET TCP/IP for OS/390 ...6-6
Requirements..6-6
Installation and Configuration...6-6
Starting and Stopping the TCP_KNET Interface ...6-7
Connecting from a Remote Client..6-7

IBM TCP/IP for OS/390...6-7
Requirements..6-7
Installation and Configuration...6-8
Starting and Stopping the TCP_IBM Interface...6-8
Connecting from a Remote Client..6-8
IBM TCP/IP Problem Diagnosis..6-9

CCI for OS/390..6-9
Requirements..6-9
Installation and Configuration...6-9
Starting and Stopping the CCI Interface...6-9
Connecting from a CCI Client ..6-10
CCI Abend Codes and Messages ...6-10

SNS/TCP for OS/390 ...6-11
Requirements..6-11
Installation and Configuration...6-11

Contents v

Starting and Stopping the TCP_SNS Interface ..6-11
Connecting from a Remote Client ...6-12

Enable and Test Security Interfaces..6-12
IBM Resource Access Control Facility (RACF)...6-12

Installing and Customizing the RACF Interface ...6-13
Computer Associates Access Control Facility 2 ...6-14

Installing and Customizing the CA-ACF2 Interface...6-14
Computer Associates Top Secret Security Facility ...6-15

Installing and Customizing the CA-TSS Interface ..6-15
Force Inactivate Timeout..6-17
Local Time Zone..6-17

Year 2000 Support..6-18
Alternate Translation Tables ...6-18

Chapter 7: Maintaining the Gateway
Database Management Functions...7-1
Starting and Stopping the EDBC Server ..7-2

Starting the EDBC Server as a Started Task ...7-2
Stopping the EDBC Server..7-2
Starting the EDBC Server as a Batch Job...7-3

The Gateway Hot Connect Function ..7-3
Maintaining the Gateway ..7-4

Display Active Command ..7-7
Adding a New Gateway User ...7-9
Presenting Additional Gateway Objects to a User ...7-10
Defining an Additional EDBC Server ..7-11

Using IIVP to Create a Second EDBC Server ...7-11
Cloning an EDBC Server to a Different LPAR...7-14
Connecting from One EDBC Server to Another..7-14
Verifying the Connection..7-16

Chapter 8: Working with CA-IDMS Data
The Database in EDBC and in CA-IDMS...8-1

Connecting to CA-IDMS...8-2
Creating Tables in CA-IDMS...8-4

Rules Governing CA-IDMS Tables..8-5
Creating Tables in CA-IDMS Through the Gateway..8-5

vi Installation and Operations Guide

Table Names in CA-IDMS and EDBC..8-7
Table Creation by the Gateway DBA ..8-7

Accessing Existing Tables and Views in CA-IDMS..8-7
Table Access Privileges ...8-8

Access to CA-IDMS Network Definitions and Data ..8-8
Dropping Tables Through the Gateway ..8-10
SQL and the Gateway...8-10
OpenSQL ..8-11
Extensions to OpenSQL..8-12

The With Clause ...8-12
The Direct Execute Immediate Statement...8-13

Data Types and Utilities ...8-14
Date Support...8-14
CA-IDMS Date and Time Values...8-14
Data Types ..8-15

Using the EDBC Terminal Monitor ..8-17

Chapter 9: Using Database Procedures
Database Procedures Defined ...9-1

Select Procedures and Message Procedures...9-1
Coding Database Procedures...9-2

Coding Conventions ..9-2
Library Considerations..9-3
Procedure Completion ..9-3

Input Parameters ...9-4
Assembler Macros...9-5

Generated Error Messages...9-5
Other Notes...9-6

Non-Function Call Macros...9-6
DBPPROLG...9-6
DPBREGS ..9-7
DBPWORKI...9-7
DBPSQLDI ..9-8
DBPEXCI ...9-8
DBPEPILI...9-8

Function Call Macros..9-9
ALLOC_MEMORY ..9-9
FREE_MEMORY ..9-10
END_TRANSACTION..9-11
DEFINE_MESSAGE...9-12

Contents vii

SEND_MESSAGE ..9-12
PROC_TRACE..9-13
CALL_EXCI ..9-14
SEND_DESCRIPTOR ..9-14
SEND_DATA..9-15
GET_VARIABLE..9-16
PUT_VARIABLE..9-17
GET_IDMS_VARIABLES..9-19
PUT_IDMS_VARIABLES..9-19

Data Handling in Assembler...9-20
Implementing Database Procedures ..9-21

Assembler Database Procedures..9-21
Coding Database Procedures ..9-22

Coding Conventions..9-22
APF Authorization...9-22

Registering Database Procedures ...9-23
Register Procedure Statement ..9-23
Permissions...9-24

Executing Database Procedures..9-25
Preparing to Execute Procedures...9-25
Execute Procedure Statement...9-25
Select Procedure Statement ..9-26

Removing Database Procedures ...9-26
Verifying Database Procedures...9-26
Planning for EXCI Database Procedures ...9-27

Chapter 10: Optimizing and Troubleshooting
Optimizing Gateway Applications...10-1

CA-IDMS Optimization ..10-1
Gateway Overhead..10-2
Gateway Query Handling ..10-2
Other Ways to Increase Gateway Performance ...10-3

Error Handling ..10-4
CA-IDMS Error Reporting..10-4
Gateway Error Reporting ...10-5

Debugging the Gateway ..10-5
Syntax Errors ..10-6
Incorrect Return Codes ...10-6
Incorrect Semantics..10-6
Data Type Errors..10-7

viii Installation and Operations Guide

Gateway Traces ...10-7
Resetting the OS/390 Subsystem ..10-8

Chapter 11: Using Table Procedures
Table Procedures ...11-1

When to Use Table Procedures ..11-1
Defining and Using Table Procedures ...11-2

Defining a Table Procedure ..11-2
Accessing Table Procedures ...11-3
Procedure Parameters ...11-3
Coding Table Procedures..11-5

Special Considerations ...11-9
Environment Independence ...11-10

Appendix A: Logical Symbols and IIPARM Clist
Logical Symbol Library Organization...A-1
Logical Name Format ..A-2
Detailed Descriptions of Logical Symbols ..A-2

ISVREDBC Logical Symbol Members ..A-3
SABExxxx or Unnnnnnn Logical Symbol Member ..A-14
Optional Logical Symbols..A-14

IIPARM Clist Description ...A-15
Description of IIPARM Parameters ..A-16
IIPARM Customization..A-17
Examples of IIPARM Use...A-18

Appendix B: Customization
EDBC.V2R3.SAMPLE.CNTL .. B-1
EDBC.V2R3.FILES.CLIST.. B-4
EDBC.V2R3.FILES.PROCLIB.. B-4

Appendix C: Multiple Central Version Support
Central Version Number...C-1
Installation Procedure..C-1

Contents ix

Appendix D: Installing Multiple Gateways

Index

x Installation and Operations Guide

Chapter

1 Introduction

EDBC for CA-IDMS (Integrated Database Management System) allows EDBC
users to access data stored in CA-IDMS databases. It also allows EDBC users on
a client to develop database applications on a UNIX or Microsoft Windows
platform that can be executed against CA-IDMS data without requiring
additional programming.

In This Guide
In this guide the term:

■ CA-IDMS gateway or gateway is synonymous with EDBC for CA-IDMS

■ OpenSQL is synonymous with EDBC OpenSQL

■ Star is synonymous with Ingres/Star

The EDBC for CA-IDMS Installation and Operations Guide serves as both a learning
tool and a permanent reference guide.

This guide explains how to perform the following tasks:

■ Prepare for the installation

■ Install EDBC and the gateway to CA-IDMS

■ Verify that EDBC and the gateway have been successfully installed

■ Operate and maintain EDBC and the gateway

This guide provides an overview of the CA-IDMS gateway and the other
components with which the gateway interacts. It also covers the following topics:

■ EDBC function and architecture

■ Configuring EDBC

■ Using CA-IDMS database procedures

■ Using CA-IDMS table procedures

Introduction 1–1

Audience

The appendixes include information on the following topics:

■ EDBC server and gateway logical symbols and IIPARM Clist

■ Customization

■ Coding database procedures

■ Multiple Central Version support

Audience
The first six chapters of this guide are addressed to the individual who is
responsible for installing the CA-IDMS gateway and for supporting EDBC users
who will access CA-IDMS data through the gateway. It assumes a working
knowledge of OS/390, TSO/E, ISPF, and JCL, and familiarity with CA-IDMS.

The “Introduction” chapter and the “Gateway Architecture and Operation” and
“Configuring and Starting Net” chapters are directed to the end user who will be
using remote applications to access CA-IDMS data through the gateway.

This guide may also be useful to individuals who are already familiar with
CA-IDMS and OS/390 and who want to understand how the CA-IDMS gateway
works in this environment.

Conventions
This guide employs several conventions, described in this section, to make
identifying information easier.

Terminology This guide observes the following distinction in terminology:

■ A command is an operation that you execute at the operating system level. An
extended operation invoked by a command is often referred to as a utility.

■ A statement is an operation that you embed within a program or database
procedure, or execute interactively (for example, using the Terminal Monitor
or the SQL Test window in Visual DBA).

 A statement can be written in Ingres/4GL, a host programming language
(such as C), or a database query language (such as SQL or QUEL).

Query Languages The industry standard query language, SQL ISO Entry SQL92, is used as the
standard query language throughout this guide. For details about the settings
required to operate in compliance with ISO Entry SQL92, see the online SQL
Reference Guide.

1–2 Installation and Operations Guide

Conventions

Syntax and User Input When representing syntax and user input, the following conventions are used:

Convention Usage

Boldface Indicates any text that you must type as shown.

Italics Indicates a variable name or placeholder for which
you must supply an actual value—this convention is
used in explanatory text, as well as syntax.

Case Sensitivity System command and environment variable names
may be case-sensitive, depending on the
requirements of your operating system.

[] (square brackets) Used to enclose an optional item.

{ } (curly braces) Used to enclose an optional item that you can repeat
as many times as appropriate.

| (vertical bar) Used between items in a list to indicate that you
should choose one of the items.

Example The following example illustrates some of these conventions:

cd directory

The cd portion is in bold, so you enter it exactly as shown. The directory portion
is in italic, indicating a placeholder that you must replace with a value that is
applicable to your system.

Introduction 1–3

Chapter

2 Overview of EDBC for CA-IDMS

EDBC for CA-IDMS is part of a family of products that provides access to data
across a wide range of hardware platforms, operating systems, and database
management systems.

This chapter provides an overview of the gateway and the other components
with which the gateway interacts. The “Gateway Function and Architecture”
chapter discusses specific aspects of the CA-IDMS gateway.

The EDBC Solution
EDBC for CA-IDMS gateway is one of a family of gateway products that provide
a consistent way to access heterogeneous databases. The gateways permit EDBC
users to run applications against local data and against data that resides in
foreign relational and non-relational database management systems. Relational
gateways provide bridges to relational database management systems such as
CA-Datacom, IBM DB2, Rdb, and ALLBase SQL. Non-relational gateways provide
bridges to non-relational database management systems such as IMS and VSAM.

Overview of EDBC for CA-IDMS 2–1

A Gateway Installation

The following figure shows an example of how a gateway provides these
bridges:

Without the Gateway

EDBC Application
VSAM Application
CA-IDMS Application

EDBC DBMS
VSAM
CA-IDMS

With the Gateway

EDBC
Client
Application

EDBC
Client
Application

EDBC
Client
Application

CA-IDMS
Gateway

VSAM
Gateway

CA-IDMS
Gateway

VSAM
Gateway

CA-IDMS

VSAM

VSAM

EDBC

CA-IDMS
Star

A Gateway Installation
A gateway installation, running under OS/390 at a CA-IDMS site, includes the
following components:

■ Gateway to access CA-IDMS tables

■ EDBC server to permit access between OS/390 and user interfaces residing
on a different computer system

■ Star to allow an EDBC client to access multiple databases simultaneously

■ Several client user interfaces, such as the Terminal Monitor, ODBC, ADO,
and OLE/DB

All components communicate through the Global Communications Architecture
(GCA), which resides at each client and server location.

2–2 Installation and Operations Guide

A Gateway Installation

The following sections describe these components in detail.

The CA-IDMS Gateway

CA-IDMS files are major repositories of corporate data. The gateway gives EDBC
clients transparent access to CA-IDMS data. It also enables programmers to use
local client tools to develop and deploy applications that process CA-IDMS data.

Combined with other components, the gateway:

■ Provides transparent access to CA-IDMS data

 The gateway allows you to run client user interfaces to access tables and
views stored in a CA-IDMS file. This access is transparent to the end user.
The CA-IDMS data appears to an EDBC client as though it is stored in a local
database.

■ Runs as a standard CA-IDMS application

 The gateway runs as a standard CA-IDMS application by translating queries
from EDBC client user interfaces into native CA-IDMS requests. CA-IDMS
executes the queries and returns the results back to the gateway. The
gateway collects and packages the responses into syntax meaningful to the
client user interfaces.

■ Enhances programmer productivity

 The gateway allows a client to build portable database applications for
CA-IDMS using client-based application development tools, such as Power
Builder or Visual Basic. These applications can run unmodified against any
server or gateway, and can coexist with existing CA-IDMS applications that
access and update this data.

■ Unifies data access with a single language

 The gateways allow users to work with data using ADO. This allows them to
access CA-IDMS, Ingres, or any other DBMS using the same language.

■ Integrates desktops, workstations, and foreign mainframes into the OS/390
environment

 The gateway allows EDBC clients to retrieve and process foreign data, and
develop database applications while working on computers such as Sun, HP,
and PCs running under operating systems such as UNIX and Microsoft
Windows.

■ Supports distributed processing

 With the addition of Star, the gateway allows users to join data from diverse
databases, such as CA-IDMS, CA-Datacom, VSAM, and IBM DB2, and use
the resulting tables as if they were derived from a single source.

Overview of EDBC for CA-IDMS 2–3

A Gateway Installation

EDBC Server

EDBC allows you to access data in two modes:

■ In local mode, the EDBC user interfaces and the target database reside on the
same computer system.

■ In remote mode, the EDBC user interfaces and the target database reside on
different computer systems. These systems must be linked with a computer
network. The system where the user interfaces reside is called the client. The
system where the target database, and, if necessary, the gateway, resides is
called the server.

EDBC is a network application that enables EDBC users to access databases on
remote platforms. With the gateways, EDBC permits communication between
components running on many types of machines, under diverse operating
systems, including OS/390, UNIX, and Microsoft Windows.

The EDBC software is installed on each machine that represents a node on the
network. When the user invokes an EDBC tool or application on his local node,
EDBC passes the query to the database on the proper remote node, using the
appropriate protocol. EDBC supports multiple protocols, including SNA LU0,
SNA LU62, TCP/IP, SNS/TCP, and CCI. CCI is supported only on OS/390.

The following illustration shows a configuration connecting an EDBC client on
an NT system with an OS/390 system:

EDBC
Client

EDBC
Server

CA-IDMS
Gateway

CA-IDMS

 Tools NT
Environment

OS/390
Environment

VSAM
Gateway

VSAM

2–4 Installation and Operations Guide

A Gateway Installation

Ingres/Star

Star is a distributed information manager that allows an EDBC user to access
multiple databases simultaneously. Star makes it possible to create a distributed
database containing data from EDBC databases and repositories such as,
CA-Datacom, RMS, VSAM, and IBM DB2. From a user’s perspective, a
distributed database (DDB) has all the characteristics of a local relational
database. The base tables, however, remain physically located in multiple
databases that can be of one or more types, residing on one or more systems. The
following illustration shows a configuration similar to the one in the previous
illustration, but with the addition of Star. See the Star User Guide for additional
information about Star and distributed databases.

EDBC

Oracle
Gateway

SQL Server
Gateway

EDBC

CA-IDMS
Gateway

Oracle SQL Server CA-IDMS

Tools NT
Environment

OS/390
Environment

Star

Ingres

VSAM
Gateway

VSAM

Security System Support

The gateway fully supports the following major OS/390 security systems:

■ IBM Resource Access Control Facility (RACF)

■ Computer Associates Access Control Facility 2 (CA-ACF2)

■ Computer Associates Top Secret Security (CA-TSS)

For more information about these systems, see the “Configuring and Starting
Net” chapter.

Overview of EDBC for CA-IDMS 2–5

A Gateway Installation

User Interfaces

Any application development interface that is ADO, OLE/DB, ODBC, or JDBC
compliant can be used to access CA-IDMS data through the gateway.

The gateway supports access from EDBC user interfaces to CA-IDMS tables.
However, the converse is not true. A user running a CA-IDMS application
cannot use the gateway to access data stored on an EDBC client.

Structured Query Language (SQL)

EDBC operates on data using the Structured Query Language (SQL). SQL
consists of high-level descriptions of actions to be performed against data, such
as select and prepare. SQL requires no instructions for accessing data; it
navigates its own way through the database.

The gateways use OpenSQL, which is a subset of Ingres/SQL. OpenSQL is
highly portable, because it is designed to open applications to many different
types of databases. All EDBC products support OpenSQL. Applications written
in SQL must be rewritten in OpenSQL for use with the gateways. OpenSQL is
documented in the EDBC OpenSQLReference Guide.

For more information about OpenSQL and the gateway, see the “Working with
CA-IDMS Data” chapter.

2–6 Installation and Operations Guide

Chapter

3
Gateway Function and
Architecture

This chapter provides a technical overview of the gateway, EDBC server, and the
gateway user interfaces that run on OS/390. The chapter describes how the
CA-IDMS gateway is structured, and how it interacts with the other components.

Gateway Functions and Structure
The gateway is implemented as a standard CA-IDMS application that runs
under OS/390. It communicates with a CA-IDMS Central Version (CV) and does
not affect the internal operations of CA-IDMS. The CA-IDMS Central Version
continues to perform all database processing, and to manage and access its own
tables, views, indexes, and system catalogs. From the perspective of the
CA-IDMS system, queries from the gateway are identical to queries from any
standard CA-IDMS application.

The gateway creates and maintains its own system catalogs that are required to
support EDBC interfaces. These system catalogs consist primarily of views that
are drawn from the CA-IDMS system tables and do not interfere with them in
any way. The operation of the gateway is transparent to CA-IDMS.

Gateway Functions

With proper authorizations within CA-IDMS, you can create, query, update, or
report data in a CA-IDMS Central Version using EDBC user interfaces. When
you make a database request, the gateway:

■ Connects to the specified CA-IDMS Central Version

■ Translates OpenSQL to the CA-IDMS version of SQL, converting EDBC data
types into CA-IDMS data types as necessary

■ Passes the direct execute immediate statement directly to CA-IDMS without
modification

■ Prepares, describes, and opens any query requiring data

■ Translates into a cursor any select statement that is not already expressed as
a cursor

Gateway Function and Architecture 3–1

Gateway Functions and Structure

■ Translates the response from CA-IDMS SQL and converts CA-IDMS data
types into EDBC data types as necessary

■ Converts any error messages into generic error messages

EDBC Architecture

EDBC employs a multi-user, single address space architecture. This takes
advantage of the OS/390 multi-tasking operating system.

The gateway, protocol servers, name server, and communication server operate
in a single address space in OS/390 and are referred to collectively as the EDBC
server. VTAM, TSO, and one or more CA-IDMS Central Versions are installed in
other, separate address spaces, as shown in the following illustration. It depicts
the flow of information when a remote user accesses the gateway. The
illustration in the Local Access section shows the flow of information when the
gateway is accessed by a local user:

Communication
Address
Space

EDBC Address Space

OS/390

SNA LU0
Protocol
Server

SNA LU62
Protocol
Server

TCP/IP
Protocol
Server

CCI
Protocol
Server

SNS/TCP
Protocol
Server

Communications
Server

CA-IDMS
Gateway

CA-IDMS
Gateway

VTAM
Address
Space

CA-IDMS
Central Version

Address
Space

Name Server

Net

CA-IDMSLU62

 or

 Cross
 Memory

3–2 Installation and Operations Guide

Gateway Functions and Structure

Remote Access

This section describes the use of OS/390 address spaces when a remote user
connects to the gateway.

Communication Address Space

When a connection request arrives from a remote EDBC client, it goes first to a
communication address space. This communication address space typically
implements the lower three layers (Network, Data Link, and Physical) of the
Open Systems Intercommunication (OSI) standard.

Different supported protocols require the appropriate communication address
space. The following communication address spaces are used:

■ IBM VTAM address space that supports the SNA LU0 and SNA LU6.2
protocols

■ CCI address space that supports the CCI protocol

■ IBM TCP/IP address space that supports the IBM TCP/IP protocol

■ Spartacus KNET address space that supports the KNET TCP/IP protocol

■ SNS/TCP address space that supports the TCP/IP protocol

These communication address spaces are installed and configured prior to the
installation of the gateway.

EDBC Address Space

The EDBC address space includes the following components: the protocol
servers, the communications server, and the name server which, together, make
up the EDBC server. In addition, the EDBC address space also includes the
gateway.

■ Protocol servers

 The protocol servers monitor traffic over the network. These servers
recognize and process incoming communication requests in their native
protocols, CCI, SNS/TCP, SNA LU0, IBM TCP/IP, SNA LU6.2, and KNET
TCP/IP. The protocol servers provide a multi-threaded interface to the
underlying physical transport. They communicate with EDBC through
in-memory message queues.

Gateway Function and Architecture 3–3

Gateway Functions and Structure

■ A multi-threaded communications server

 A multi-threaded communications server (Comm server) establishes
connections to the name server and to the gateway. A new thread is created
for each active connection, whether incoming or outgoing. In addition, one
Comm server thread listens for new communications requests. The Comm
server provides communication protocol stack functions, and transport
functions. It also performs cross-platform data format conversions, and
manages session context. The Comm server thread services a connection to a
gateway thread.

■ A name server

 A single name server queues incoming connection requests and handles
them serially. The name server maintains a list of the classes of
communication servers (the CA-IDMS, and perhaps, the IMS Comm servers)
that are installed in the gateway address space. The name server also tracks
the status (active or inactive) of each Comm server in the address space.

■ Gateway threads

 A gateway thread is associated with a Comm server thread. The gateway
receives messages from the Comm server, translates these messages and data
types, and then forwards them to the CA-IDMS Central Version. The
gateway is multi-threaded so it can support multiple connections
concurrently.

 The code for both the Comm server and the gateway consists of executable
load modules. When you initialize the gateway address space, OS/390 loads
a single copy of the Comm server and the gateway code. This code is
reentrant, so multiple tasks can share a single copy of it.

CA-IDMS Address Space

The method by which the CA-IDMS gateway interfaces to a CA-IDMS Central
Version is a function of how the gateway is accessed. When the access is from a
remote client, the gateway can be configured to use either a cross memory
interface or an IBM VTAM LU62 line driver interface. With the cross memory
option, access to multiple central versions (maximum of 50) is allowed. When
accessed locally, the CA-IDMS batch CV facility is used to communicate to the
the Central Version.

The CA-IDMS system handles queries from the gateway just as it would any
other standard CA-IDMS application. CA-IDMS processes these statements or
commands, and the results are then returned to the gateway. The gateway
processes these as necessary, and returns the resulting information to the EDBC
server for transmission back across the network.

3–4 Installation and Operations Guide

Local Access

Local Access
This section describes the use of OS/390 address spaces when a local user
connects to the gateway. In this mode, the gateway communicates to the
CA-IDMS Central Version (CV) using batch CV facilities. The following figure
shows the flow of information when a local user accesses the gateway:

EDBC
AddressSpace

OS/390

SNA LU0
Protocol
Server

SNA LU62
Protocol
Server

TCP/IP
Protocol
Server

CCI
Protocol
Server

SNS/TCP
Protocol
Server

CA-IDMS
Address Space

User Address
Space

CA-IDMS

Name
Server

Communication
Server

CA-IDMS
Gateway

EDBC
User

Interfaces

Gateway Function and Architecture 3–5

Local Access

User Address Space

There are three EDBC user interfaces that run under OS/390:

■ Terminal Monitor

■ Embedded OpenSQL Preprocessor for C

■ Embedded OpenSQL Preprocessor for PL/I

In the OS/390 environment, these all run in a user address space (batch or TSO).
When the gateway is accessed by a user on the same OS/390 system, the
gateway also runs in that user’s address space. The EDBC address space is only
used to establish the connection initially.

When a user issues a connect statement for a CA-IDMS Central Version, the
connection request is forwarded from the EDBC user interface to the name
server, which runs in the EDBC address space, as described in the EDBC address
space section.

When the name server supplies the appropriate connection information, the user
interface on OS/390 connects with the gateway. When accessed locally, the
gateway runs in the user’s address space. The gateway connects to the
appropriate CA-IDMS Central Version through the batch Central Version
Facility.

EDBC Address Space

EDBC must be up and running for local access because the name server runs in
this address space, and it is needed to establish the connection to the gateway.

The name server is a single-threaded server that is only used at connect time. For
local clients, the name server translates CA-IDMS Central Version requests into
the information needed to connect to the gateway.

The Stand-Alone Back-End (SABE) parameter may be used to bypass the name
server by using predefined, default server class information. The SABE
parameter eliminates the requirement that the EDBC server must be running in
order to provide local access. See the Verifying the Installation Functionality
section in the “Installing the Gateway” chapter for information on how to use
this parameter.

3–6 Installation and Operations Guide

Gateway System Catalogs

CA-IDMS Address Space

The interaction between the gateway and CA-IDMS differs, depending on
whether the gateway is running in the server address space or in a user address
space. When running in the server address space, the interaction is by means of
either the cross memory interface or the LU6.2 (APPC) API. When the gateway
runs in a user address space, the interaction is by means of the batch CV facility
(Mini-CV).

Gateway System Catalogs
Every relational database management system maintains catalogs to store
information about its tables. The catalogs include data about:

■ How the tables are organized

■ Who owns the tables

■ Where the tables are stored

The EDBC tools must encounter this information in the gateway system catalogs.
The system catalogs consist primarily of views based on the CA-IDMS system
tables. Other gateway system catalogs consist of tables that store EDBC objects
such as reports or menus that have been created with the EDBC user interfaces.

The gateway system catalogs do not replicate the CA-IDMS system tables. As a
result, these catalogs do not have to be updated each time the CA-IDMS system
tables are updated. The system catalogs that store gateway-specific information
are updated only by the gateway.

Gateway Function and Architecture 3–7

Chapter

4 Preparing for Installation

The installation process involves three components: the EDBC server, the
CA-IDMS gateway, and the gateway user interfaces that run on OS/390.

This chapter:

■ Outlines installation requirements for hardware, software, and storage.

■ Describes what experience and authority is required of the installer.

■ Addresses the key aspects of configuring the networking software to permit
communication between a remote computer system and the OS/390 system
where the gateway resides.

■ Summarizes the major tasks that are required to install the components and
to enable remote and local gateway users to access CA-IDMS Central
Versions.

Before Beginning the Installation
Before you begin the installation, read this chapter to get an overview of the
process. In addition, read the Release Notes for the current version of the EDBC
server and the gateway. The Release Notes are provided in hard copy and can
update the information in this guide.

Preparing for Installation 4–1

Software Requirements

Software Requirements
The CA-IDMS gateway requires the software resources listed in the following
table:

Software Specifications

IBM Operating System Any currently supported release of
MVS/ESA, OS/390, and z/OS

Application Subsystem TSO/E

Communication Access Method:
VTAM

ACF/VTAM

One of the following
communication protocols:

■ SNA LU0

■ SNA LU62

■ KNET TCP/IP

■ IBM TCP/IP

■ CCI

■ SNS/TCP

DB System: CA-IDMS Release 12.0 and above with the
SQL option.

Security Facilities The IMS gateway supports any of the
following security facilities:

■ IBM Resource Access Control Facility
(RACF)

■ Computer Associates Access Control
Facility 2 (CA-ACF2) with support for
IBM’s Security Access Facility (SAF)

■ Computer Associates Top Secret Security
(CA-TSS)

User interfaces on client platform Supported interfaces include:

EDBC Client
Ingres Client
Jasmine Client

The client can reside on Microsoft Windows
or any of more than 30 UNIX platforms.

4–2 Installation and Operations Guide

Storage Requirements

Software Specifications

Gateway user interfaces on
OS/390 platform

Netu
SQL Terminal Monitor
Embedded SQL (ESQL) Preprocessor for C
ESQL for PL/I

Storage Requirements
The gateway requires the storage specified in the following sections.

Disk Storage

The gateway datasets require 290 cylinders of space on a 3380 or 3390 storage
device.

If an OS/390 archive product such as CA-ASM2 or DFHSM is installed, exclude
the gateway datasets from migration.

Virtual Storage Requirements

The gateway requires the virtual storage described in the following sections:

Gateway Address
Space

The CA-IDMS gateway and server are installed together in a single OS/390
address space. This code runs almost entirely above the 16 MB line, except
when it invokes OS/390 utilities. The gateway address space requires 640 bytes
of Common System Area (CSA) storage below the 16 MB line for intra-address
communication.

The server can support 240 simultaneous connections if the address space has a
region size of 56 MB. The minimum region size is 16 MB, which supports 32
concurrent connections. A connection is considered a virtual gateway user on
VMS, UNIX, or OS/390.

During initialization, the address space requires a working set of approximately
2100 KB. The initialization phase occurs only once, during startup, and takes
about a minute. When dormant, the working set is approximately 300 KB.

When a new connection is established, it acquires a control block and about 220
KB of virtual storage above the line. This is allocated for the life of the connection
and is returned when the user disconnects. An individual connection requires no
additional storage in terms of Common System Area (CSA) storage below the 16
MB line.

Preparing for Installation 4–3

Installer’s Requirements

The server address space in OS/390 runs as non-swappable code. If desired, this
code can be loaded in the Link Pack Area (LPA) that OS/390 reserves for
frequently used programs.

User Address Space

A user can access the gateway from OS/390, using the Terminal Monitor or one
of the embedded OpenSQL preprocessors. When the gateway is accessed locally,
it resides in the user address space along with the user interfaces. This requires a
user region size of 4 to 6 MB.

Installer’s Requirements
The CA-IDMS gateway requires that someone install it and provide ongoing
support for the gateway users. The individual who assumes these
responsibilities is referred to throughout this guide as the gateway database
administrator (DBA).

Installing the CA-IDMS gateway requires a working knowledge of OS/390,
TSO/E, ISPF, and JCL, as well as familiarity with CA-IDMS.

To expedite installation, the gateway DBA should have:

■ Global system administrator status within OS/390, with authority to update
the OS/390 system datasets listed in the following section, and to schedule
or perform an IPL of OS/390.

 If necessary, the installation process can perform the required customization
and place the files in gateway target libraries. Later, someone with the
necessary authority can copy these files to system libraries.

■ Ability to configure the software protocol for Net.

 This includes VTAM and either SNA LU0, SNA LU62, KNET TCP/IP, IBM
TCP/IP, CCI, or SNS/TCP.

■ Ability to create OS/390 user IDs and authorize them for TSO and
CA-IDMS.

 These user IDs are assigned to the EDBC users who will access the gateway.

■ CA-IDMS authority to create the sample databases that are part of the
gateway installation and verification process.

4–4 Installation and Operations Guide

Installer’s Access to Resources

Installer’s Access to Resources
To install the gateway on OS/390, it is necessary to access or update a number of
resources in OS/390 and CA-IDMS. These libraries and utilities are listed in the
tables below. If you do not have the necessary authority, you can prepare the JCL
and control statements and have the updates made by the appropriate
individual.

The following table shows the OS/390 and CA-IDMS libraries that are
referenced:

Libraries
Referenced

Library Name Access Mode

OS/390 SYS1.LINKLIB

SYS1.MACLIB
SYS1.PROCLIB

SYS1.SORTLIB
SYS1.VTAMLIB
SYS1.VTAMLST
SYS1.SISTMAC1
SYS1.AMODGEN
SYS1.MODGEN

Execute and optional
update
Read
Execute and optional
 update
Execute
Optional update
Optional update

CA-IDMS CA-IDMS
Installation
Load Library

Execute

The following table shows the OS/390 and CA-IDMS utilities that are referenced:

System Utility Name Access Mode

OS/390 IDCAMS
IEBUPTE
IEFBR14
IEV90/ASMA90
IEWL
IKJEFT01

Execute
Execute
Execute
Execute
Execute
Execute

CA-IDMS IDMSBCF Execute

Preparing for Installation 4–5

Installation Overview

Installation Overview
The installation procedure is modeled on a standard OS/390 installation
procedure. The installation process uses TSO to customize JCL and control
statements that are provided on the gateway product tape. The estimate of the
time required to install the gateway is approximately eight hours.

The installation procedure is referred to as the EDBC Installation and
Verification Procedure (IIVP). The IIVP installs the following:

■ CA-IDMS gateway

■ EDBC server

■ Gateway user interfaces on OS/390 (the EDBC Terminal Monitor, the
Embedded SQL Preprocessor for C, and the Embedded SQL Preprocessor for
PL/I)

The installation process also creates sample CA-IDMS databases. These
databases are provided so that the gateway DBA can verify that the gateway has
been successfully installed. Operating locally under TSO, the gateway DBA
issues SQL queries to the sample databases. The resulting data is presented just
as it would appear to an EDBC end user.

Installation Summary

The installation of the gateway is completed in several phases as follows:

■ Installation of the CA-IDMS gateway and EDBC server as described in the
“Installing the Gateway” chapter

■ Verification of the gateway installation as described in the “Installing the
Gateway” chapter

■ Network configuration as described in the “Configuring the EDBC Server”
chapter

■ Setting up gateway users as described in the “Maintaining the Gateway”
chapter

Installing the Gateway

This section summarizes the procedure for installing the gateway components on
OS/390. The steps in the installation phase are as follows:

1. Allocate and load the gateway datasets from the product tape (stage0).

2. Customize the macros in the file that contains the stage1 input.

3. Customize and submit the JCL to take the stage1 input file and produce the
stage2 jobs.

4–6 Installation and Operations Guide

Installation Overview

4. Submit the stage2 jobs for execution, one at a time and check the return
codes.

5. Define the EDBC subsystem to OS/390 and APF authorize the EDBC load
libraries.

6. Perform a CA-IDMS sysgen to define the CA-IDMS resources (tasks,
transactions, LINEs, PTERMs, and so on) necessary to interface the CA-
IDMS gateway to the CA-IDMS Central Version. The sysgen macro
statements are created during stage2 processing and are placed in the
SAMPLE.CNTL library as member IDMSxxx (xxx = CV number).

7. Modify the TSO logon procedure used by the gateway DBA.

See the “Installing the Gateway” chapter for a detailed description of the
installation procedure.

Verifying Gateway Functionality

Once installed, you can test the gateway by accessing the sample database that
was created during the installation.

To verify the gateway installation, the following steps must be completed:

1. As the gateway DBA, log on to TSO using the modified TSO logon
procedure.

2. Invoke the EDBC Terminal Monitor and test local access to the sample
database.

See the “Installing the Gateway” chapter for a detailed description of the
procedures to complete these steps.

Supporting Gateway Users

The gateway DBA must perform the following tasks to enable EDBC users to
access the gateway:

■ Create OS/390 user IDs for EDBC users

■ Define EDBC users to the gateway

■ Define and authorize EDBC users to the CA-IDMS CV

Preparing for Installation 4–7

Chapter

5 Installing the Gateway

This chapter provides step-by-step instructions for installing the CA-IDMS
gateway on OS/390. The installation procedure is referred to as the EDBC
Installation and Verification Procedure (IIVP).

This installation phase is organized into four major stages:

■ Customizing the stage1 input and producing the stage2 jobstream

■ Submitting the stage2 jobstream jobs

■ Completing the final installation procedures

■ Verifying functionality and network connectivity

Many of the tasks involve customizing JCL and control statements provided on
the gateway product tape. Most of the work is performed under TSO.

Installation Summary
The following table lists the steps you will perform during the installation. Each
step is described in greater detail in the sections that follow this table.

 Task Output

1. Back up previous gateway
installation, if necessary.

See Backing up Previous
Installation Datasets section.

Tape containing previous installation files
and any applications stored in user
interface catalogs.

Installing the Gateway 5–1

Installation Summary

 Task Output

2. Create and submit IEBGENER
job to restore bootstrap JCL
from tape.

See Allocating and Loading
the Installation Datasets
section.

Stage 0 installation jobstream restored
into data set with default name
EDBC.V2R3.STAGE0.JOB.

3. Edit and submit stage0
jobstream to allocate and copy
gateway data sets onto disk.

See Customizing the Stage1
Input section.

Gateway installation data sets, with
default names such as:
EDBC.V2R3.FILES.ASM
EDBC.V2R3.FILES.MACLIB
EDBC.V2R3.FRONT.LOAD

4. Use ISPF to customize
statements in stage1 input files
to reflect
installation-dependent values:

■ IGWFJOB

■ IGWFUSER

■ IGWFINET

■ IGWFIDMS

■ IGWFPSVR

■ IGWFPIPE

■ IGWFBLD

See Customizing the stage1
Input section.

Customized and saved statements in
member IGWFSTGS in data set with
default name EDBC.V2R3.FILES.ASM.

5. Customize and submit
assembly JCL that uses stage1
input to produce stage2
jobstream. Input is member
IGWFSTGS in data set with
default name EDBC.V2R3.
SAMPLE.CNTL.

See the stage1 Jobstream.

Stage2 jobstream with report and listing.

5–2 Installation and Operations Guide

Installation Summary

 Task Output

6. Review and update if
necessary jobs in IIVP stage2
jobstream, which is the output
of the IIVP stage1. Located in
data set with default name
EDBC.V2R3.STAGE2.CNTL.

Submit jobs one at a time in
the following sequence:
IGWFVPA0
IGWFVPS0
IGWFVPS1
IGWFVPS2
IGWFVPS3
IGWFVPS4
IGWFVPI0
IGWFVPN0
IGWFVPP0
IGWFVPZ9

See Submitting the Stage2
Jobstream Jobs section.

Customized files that build the gateway
environment, creating load module,
authorizing catalogued procedures, etc.

7. Define the EDBC gateway
subsystem to OS/390 and APF
authorize EDBC load libraries.

Saved IEFSSNxx member and IEAAPFxx
member of SYS1.PARMLIB.

8. Customize TSO logon
procedure for the gateway
DBA.

Saved logon procedure.

9. Perform a CA-IDMS sysgen to
define CA-IDMS resources
(programs, tasks, and so on)

Not applicable.

Installation Framework

The CA-IDMS gateway is defined to OS/390 as one subsystem. This subsystem is
used by the CA-IDMS gateway and EDBC server. It has an associated address
space, known as the gateway address space.

The overall gateway subsystem has the default name EDBC. It is recommended
that you accept this default name, as it facilitates the installation.

Installing the Gateway 5–3

Installation Summary

You must IPL the operating system to define the gateway subsystem to OS/390
and permanently APF authorize the gateway load libraries. This can be done
either before or after the installation process.

Read through this entire chapter to get an overview of the process before you
begin the installation. In addition, be sure to read the Readme file for the current
version of the product.

Installation Expectations

The IIVP stage2 jobstream accomplishes the following operations without an
IPL:

■ Customize the installation and run-time parameters that the gateway refers
to as logical symbols.

■ Create and initialize the sample CA-IDMS databases using the CA-IDMS
gateway.

■ Invoke the EDBC Terminal Monitor as a batch TSO application to verify
access to the sample databases through the CA-IDMS gateway.

■ Customize JCL for additional sample databases. This JCL can be submitted
after the installation is complete.

The following operations are not performed by the IIVP stage2 jobstream:

■ Adding JCL passwords to any jobs. Use an installation-approved method to
provide this information.

■ Adding the gateway load libraries to the APF list

■ Defining the gateway subsystem to OS/390

■ Updating the TSO logon procedure to access the gateway

■ Installing the network software on the server and client. This must be done
before the gateway server can be started.

■ Performing a CA-IDMS sysgen to define new resources

The EDBC Product Tape

The EDBC product tape contains all the files needed to install the CA-IDMS
gateway.

The EDBC server and CA-IDMS gateway are distributed on a single 9-track tape
or cartridge. The tape has the following characteristics:

■ IBM 3240 type or IBM 3480

5–4 Installation and Operations Guide

Allocating and Loading the Installation Datasets

■ Standard label format, made using the IBM utilities IEBCOPY and
IEBGENER

■ Contains 40 files

■ VOLSER printed on the external label of the tape (required information for
installation procedure)

■ Contents require approximately 270 cylinders of storage on a 3380 or 3390
DASD

Backing Up Previous Installation Datasets

To save the data sets from an existing installation, either back up the existing
installation files, or assign a different data set prefix to the new installation files.

Important! If you assign the new gateway files the same dataset prefix as the existing
files, the old files will be deleted before the new files are loaded.

Allocating and Loading the Installation Datasets
The first file on the gateway product tape file is a bootstrap jobstream that
prepares for the allocation and copying of the installation data sets. After the
stage0 jobstream has been restored from File 1 of the tape, customize, and submit
the jobstream for execution. The jobstream will allocate and load all the
remaining installation data sets from tape to disk.

Creating JCL to Restore the Stage0 Jobstream

The following steps detail how to create a job, called IGWFJOB0, that uses the
IEBGENER utility to allocate and copy File 1 from the product tape to a disk data
set.

1. In an OS/390 data set, create JCL similar to the following sample:
//IGWFJOB0 JOB
//*
//* ALLOCATE AND COPY FILE 1 TO A DISK DATASET
//* THE RESTORED FILE IS THE STAGE 0 JOBSTREAM
//*
//COPYFILE EXEC PGM=IEBGENER
//SYSIN DD DUMMY
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=EDBC.TV2R3.INSTALL.CNTL,
// VOL=(,RETAIN,SER=IDxxyy),
// UNIT=TAPE,LABEL=(1,SL),
// DISP=(OLD,KEEP)
//SYSUT2 DD DSN=EDBC.V2R3.STAGE0.JOB,
// DISP=(NEW,CATLG,DELETE),
// UNIT=3380,VOL=SER=volser,
// SPACE=(TRK,(1,1))

Installing the Gateway 5–5

Allocating and Loading the Installation Datasets

2. Make sure the jobcard is valid.

3. For the SYSUT1 DD statement, specify the VOL parameter as listed on the
gateway product tape.

4. For the SYSUT2 DD statement, specify:

– The name under which to store the data set. The default is
EDBC.V2R3.STAGE0.JOB.

– The name of the physical unit on which the gateway data sets will be
stored. The default is 3380.

– The volser number of the disk to which this data set is to be allocated.

5. Submit the job for execution.

6. If you encounter errors restoring this jobstream, correct the errors and repeat
until the SYSUT1 file is loaded successfully.

Customizing the Stage0 Installation Jobstream

The previous step restored the stage0 installation jobstream into a data set with
the default name EDBC.V2R3.STAGE0.JOB. This step also requires the product
tape as input and creates the gateway installation data sets.

Note: This jobstream assigns a common data set prefix for all installation data
sets. The default value for this prefix is EDBC.V2R3. It is recommended that you
use this default prefix, since it simplifies the installation process. The default
data set prefix is used throughout this guide to refer to data set names.

The following table shows the steps executed by stage0 JCL:

Stepname Description RETCODE

STEP010 An IDCAMS step that deletes any previous
installation data sets.

Returns a code of 8 if there are no data sets to
delete.

0 or 8

STEP020 Executes the ALLOC inline procedure to
allocate the installation data sets.

0

STEP030
through
STEP110

Copies the installation data sets from the
distribution tape to disk.

0 or 4

The following steps describe how to use the ISPF editor to edit the stage0
jobstream and how to submit the job:

5–6 Installation and Operations Guide

Allocating and Loading the Installation Datasets

1. Add a valid jobcard.

2. Customize the following values (all values that must be customized have the
form #VALUE):

#PREFIX Change this string to the value chosen for the installation data

set prefix. The prefix can be a 1-n level qualifier. For example,
if you choose the default value, EDBC.V2R3, issue the ISPF
editor command:

C '#PREFIX' 'EDBC.V2R3' ALL

#DVOL Change this string to the serial number of the volume where
the installation data sets will be allocated. For example, if you
choose the default value, MVSVOL, issue the command:

C '#DVOL' 'MVSVOL' ALL

#TAPE Change this string to the unit name for the IBM tape drive
where the product tape is mounted. If you choose the default
value, TAPE, issue the command:

C '#TAPE' 'TAPE' ALL

#TVOL Change this string to the serial number of the volume of the
product tape. Refer to the external label of the tape to find the
proper value. Issue the command:

C '#TVOL' 'IDVJ14' ALL

#ADSK Change this string to the unit name of the target disk pack on
which the installation data sets will reside. If you choose the
default value, 3380, issue the command:

C '#ADSK' '3380' ALL

#TDSK Change this string to the unit name of the work disks. If you
choose the default value, SYSDA, issue the command:

C '#TDSK' 'SYSDA' ALL

#MAXBLK Change this string to the value of the maximum block size for
the gateway load libraries. The maximum value is 32760. If
you choose the default value, 23476, issue the command:

C '#MAXBLK' '23476' ALL

3. Submit this job for execution.

 STEP010 returns a non-zero return code if there are no data sets to delete. If
you encounter any errors, review the output and take corrective action.

Installing the Gateway 5–7

Allocating and Loading the Installation Datasets

 When the job completes properly, the gateway installation data sets have
been allocated and unloaded from the product tape.

Gateway Datasets That Are Allocated and Restored

The following gateway installation data sets are allocated by the stage0 job.
These data sets are listed as they would be named with the default prefix:
EDBC.V2R3.BACK.LOAD
EDBC.V2R3.DOC.TEXT
EDBC.V2R3.FILES.ASM
EDBC.V2R3.FILES.CLIST
EDBC.V2R3.FILES.DBRMLIB
EDBC.V2R3.FILES.ENGLISH.FAST.MSG
EDBC.V2R3.FILES.ENGLISH.SLOW.MSG
EDBC.V2R3.FILES.H
EDBC.V2R3.FILES.HLP
EDBC.V2R3.FILES.IIPARM
EDBC.V2R3.FILES.ISPLLIB
EDBC.V2R3.FILES.MACLIB
EDBC.V2R3.FILES.NAME.IINAME.ALL
EDBC.V2R3.FILES.PROCLIB
EDBC.V2R3.FILES.RTIFORMS.FNX
EDBC.V2R3.FILES.SQL
EDBC.V2R3.FILES.STARTUP.DATA
EDBC.V2R3.FILES.USERS.DATA
EDBC.V2R3.FILES.UTEXE.DEF
EDBC.V2R3.FRONT.LOAD
EDBC.V2R3.OBJ
EDBC.V2R3.NET.LOAD
EDBC.V2R3.PLI.INCLIB
EDBC.V2R3.SAMPLE.ASM
EDBC.V2R3.SAMPLE.C
EDBC.V2R3.SAMPLE.CNTL
EDBC.V2R3.SAMPLE.COBOL
EDBC.V2R3.SAMPLE.H
EDBC.V2R3.SAMPLE.PLI
EDBC.V2R3.SAMPLE.SASC
EDBC.V2R3.STAGE2.JOBS
EDBC.V2R3.STAGE2.CNTL
EDBC.V2R3.TEST.PLI
EDBC.V2R3.TEST.QPLI
EDBC.V2R3.TEST.SPLI
EDBC.V2R3.USER.LOAD
EDBC.V2R3.USER.CNTL
EDBC.V2R3.USER.OBJ
EDBC.V2R3.WS.CLIB
EDBC.V2R3.WS.H
EDBC.V2R3.WS.LOAD
EDBC.V2R3.FILES.NAME.IINAME.INIT

Note: The FILES.CLIST dataset is allocated with
DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160). If these attributes do not conform to your
installation standards, use ISPF or some other utility to copy the FILES.CLIST
members to a library allocated with the correct DCB attributes.

5–8 Installation and Operations Guide

Customizing the Stage1 Input

Customizing the Stage1 Input
The IIVP customizes the stage1 input, which consists of the statements listed in
the following table. They are stored in the IGWFSTGS member of the
EDBC.V2R3.FILES.ASM data set. Review each statement and, if necessary, use
ISPF to customize it to reflect site-specific values.

Note: Do not modify the macros in EDBC.V2R3.FILES.MACLIB.

Statement Purpose

IGWFJOB Customizes jobcard parameters

IGWFUSER Customizes initial gateway users

IGWFINET Customizes the EDBC server

IGWFIDMS Customizes the CA-IDMS gateway

IGWFPSVR Customizes the protocol server

IGWFPIPE Customizes the CA-IDMS LU62 interface (PIPE)

IGWFBLD Builds the IIVP jobstream

Note: The first statement must be IGWFJOB, and the last statement must be
IGWFBLD.

If you specify a parameter with special characters, enclose them in quotes. If you
provide a NULL value, do not place it in quotes.

The following sections define each statement, and outline its parameters, usage,
and defaults.

IGWFJOB Statement: Specifying Jobcard Parameters

The IGWFJOB statement defines the installation-specific values that are used to
build the JCL job statements for the IIVP stage2 jobstreams. You must specify
this statement first.

This statement is defined as follows:
IGWFJOB ACCT='(ACCT,INFO)', ACCOUNTING INFO X
 CLASS=A, EXECUTION CLASS X
 JOBNAME='IGWFVP', JOBNAME PREFIX X
 NOTIFY=, NOTIFY USER X
 MSGCLASS=H, MSGCLASS X
 MSGLEVEL='(1,1)', MSGLEVEL X
 PGMRNAME='EDBC INSTALL', PROGRAMMER NAME X
 REGION=4096K, REGION SIZE X
 SYSAFF=, SYSTEM AFFINITIES X
 USER=EDBCDBA GATEWAY DBA

Installing the Gateway 5–9

Customizing the Stage1 Input

Most of these are standard OS/390 parameters; therefore, enter values that
comply with the conventions at your site. The following table lists only
parameters with special significance for the installation procedure:

IGWFJOB
Parameter

Usage Default

ACCT= The information used to build the
accounting information in the IIVP
jobstream job statements. This
information is placed in parenthesis on
each job statement generated by the IIVP
stage1.

' '

CLASS= The CLASS= parameter on the IIVP
jobstream job statements.

A

JOBNAME= Prefix for each job name in the IIVP
stage2 jobstream.

The IIVP jobstream appends a
two-character suffix to this supplied
value. The prefix is limited to a
maximum of six characters. If it exceeds
this limit, the prefix is truncated and a
warning message is issued.

IGWFVP

NOTIFY= The value assigned to the NOTIFY=
parameter of the IIVP job statements.

IGWFJOB
USER=
parameter

MSGCLASS= The MSGCLASS= parameter on the IIVP
jobstream job statements.

H

MSGLEVEL= The MSGLEVEL= parameter on the IIVP
jobstream job statements.

(1,1)

PGMRNAME= The programmer name field that appears
in each job of the IIVP jobstream.

Limited to a maximum of 20 characters. If
the value specified exceeds this
maximum, it is truncated and a warning
message is issued.

'EDBC
INSTALL'

REGION= The value assigned to the REGION=
parameter of the IIVP JOB
STATEMENTS.

0M

5–10 Installation and Operations Guide

Customizing the Stage1 Input

IGWFJOB
Parameter

Usage Default

USER= Enter the TSO user ID for the gateway
DBA. This value is added automatically
to the USERS= list of gateway users in
the IGWFPARM statement. It is also used
as the default value for the NOTIFY=
parameter in this statement.

EDBCDBA

SYSAFF= Used to generate a /*JOBPARM
SYSAFF= statement for generated stage2
jobs. The value specified indicates the
systems in a JES2 multi-access spool
configuration that are eligible to process
stage2 jobs. See the JCL Reference guide
for acceptable values.

ANY

IGWFUSER Statement: Specifying Initial Gateway Users

The IGWFUSER statement specifies the initial users that are to be defined to the
gateway. The information specified in this statement is used to update the
EDBC.V2R3.FILES.USERS.DATA data set and creates the user entries for the
EDBC system catalogs.

This statement is specified once for each user. It is defined as follows:
IGWFUSER TYPE=IDMS, IDMS USER_NAME X
 USER_NAME=EDCUSR1, X
 DBA_NAME=, DEFAULT DBA_NAME X
 SCHEMA= DEFAULT SCHEMA

The following table describes the parameters in the IGWFUSER statement:

IGWFUSER
Parameter

Usage Default

TYPE= The server type name. This must
be IDMS.

None

USER_NAME= The remote authid of the gateway
user.

None

DBA_NAME= The DBA name associated with
this user.

Value of
USER_NAME

SCHEMA The schema name associated with
this user.

Value of
USER_NAME=

Installing the Gateway 5–11

Customizing the Stage1 Input

IGWFINET Statement: Specifying EDBC Parameters

The IGWFINET statement specifies the values for initializing and configuring
EDBC. This statement is defined as follows:
IGWFINET SUBSYS=EDBC, SUBSYSTEM NAME X
 ID=I1, INSTALLATION ID X
 SVRTYPE=IDMS, DEFAULT SERVER TYPE X
 SECURITY=NONE, DEFAULT SECURITY X
 TIMEOUT=, GATEWAY WAIT TIMEOUT X
 MAXUSER=64, MAXIMUM USERS X
 NETLMOD=IIPSERV, NETWORK LOAD MODULE X
 TIMEZONE=7 TIMEZONE

Customize the parameters for the IGWFINET statement as shown in the
following table:

IGWFINET
Parameter

Usage Default

SUBSYS= Four-character EDBC subsystem ID.

Value must be added to the IEFSSNxx member in
SYS1.PARMLIB. For more information, see Defining the
gateway Subsystem to OS/390 section.

If values are specified for DBNM and ISVR in the previous
statement, they must match this value.

EDBC

ID= Two-character installation code for the gateway installation.
The value for this parameter must match the value for the
INSTALL= parameter in the IGWFPSVR statement.

The installation code is assigned to the following installation
data sets (shown with default names):

EDBC.V2R3.FILES.NAME.IICOMSVR.I1
EDBC.V2R3.FILES.NAME.IIDB2.I1
EDBC.V2R3.FILES.NAME.IIIDMS.I1
EDBC.V2R3.FILES.NAME.IIEDBC.I1
EDBC.V2R3.FILES.NAME.IILOGIN.I1
EDBC.V2R3.FILES.NAME.IINODE.I1
EDBC.V2R3.FILES.NAME.IIIMS.I1
EDBC.V2R3.FILES.NAME.IIVSAM.I1
EDBC.V2R3.FILES.NAME.IIVANT.I1

I1

SVRTYPE= Default server class, as specified when accessing CA-IDMS
from TSO or a batch application.

Note: This value must be entered as shown.

IDMS

5–12 Installation and Operations Guide

Customizing the Stage1 Input

IGWFINET
Parameter

Usage Default

SECURITY= Type of security package to which the gateway interfaces.
The options are:

■ RACF

■ ACF2

■ TSS

■ None

The SECURITY= parameter is used to set the logical symbol
II_SECURITY= to the specified value.

NONE

TIMEOUT= Specifies the maximum time, in minutes, that a gateway
thread waits before it is disconnected. The range for this
parameter is between 0 and 9999. A 0 value indicates that no
wait time limits will be enforced.

The TIMEOUT= parameter is used to set the
II_INACTV_TMOUTINT logical symbol. This logical, in turn,
is used to compute the INACTIVE INTERVAL value (stall
interval) for the EDBCRSPD cross memory task using the
following computation:

INACTIVE INTERVAL = II_INACT_TMOUTINT +
II_FORCE_TMOUTINT + 1 minute

If either logical is increased, the stall interval for the
EDBCRSPD task should be adjusted accordingly. The
EDBCRSPD task must never terminate before the CA-IDMS
gateway thread.

0

MAXUSER= Maximum number of remote users that can connect to EDBC.

Note: This parameter can be set to a value up to 4080 for the
current release.

64

NETLMOD= Name of the network load module to use for EDBC
initialization.

The NETLMOD= parameter is used to set the II_NET_LMOD
logical symbol to the specified value.

IIPSERV

TIMEZONE= Specifies the difference in hours between Greenwich mean
time (GMT) and the local time zone where the gateway server
is running.

0

Installing the Gateway 5–13

Customizing the Stage1 Input

IGWFIDMS Statement: Specifying CA-IDMS Gateway Parameters

The IGWFIDMS statement is defined as follows:

■ Site-specific values for the CA-IDMS data sets and the CA-IDMS Central
Version

■ The location for the sample CA-IDMS database created as part of the
installation process

5–14 Installation and Operations Guide

Customizing the Stage1 Input

This statement is defined as follows:
IGWFIDMS INSTALL=UPGRADE INSTALL TYPE X ,

 IDMS_LOADLIB='idms.load', CA-IDMS loadlib X
 IDMS CVNUM=’ Target CV # of install X
 IDMS_DCMSG='idmsdcmsg', CA-IDMS DCMSG X
 IDMS SECSGON=’ Cross memory signon option X
 IDMS_SYSCTL='sysctl', CA-IDMS SYSCTL X
 IDMS_DISTSRC='distsrc', CA-IDMS DISTSRC X
 IDMS_MACLIB='maclib', CA-IDMS MACLIB X
 IDMS_OBJ='objlib', CA-IDMS OBJLIB X
 HLQ_PREFIX='hlqprefix', Dataset prefix X
 HOT_CONNECT=, Hot Connect Option X
 DASD_UNIT=, DASD UNIT X
 DBPROCS_MAX=128, MAX CONCURRENT DBPROCS X
 DBPROCS_MEMORY=1024, MAX MEMORY FOR DBPROCS X
 IIDMCL_BUFNAME=, Buffer Name X
 MBUF_PGSIZ=, Largest Page Size X
 IBUF_PAGES=, # of Buffer pages X
 MBUF_PAGES=, Max Buffer pages X
 CDMSLIB=, CA-IDMS CDMSLIB X
 CVDMCL_NAME=, CV Global DMCL. X
 DBNAME_TABLE=, CV DBNAME Table X
 DBA_LOADLIB=, IDMS DBA load lib X
 SYSTEM_DBNAME=, CV System DBNAME X
 SYSTEM_OWNER= EDBC catalog owner X
 SECONDARY_CATALOG=, NEW or OLD X
 SQL_DBNAME=, GATEWAY DBNAME X
 SQLSEG_NAME=, GATEWAY SEGMENT name X
 CATSEG_NAME=, STDCAT " X
 DEFSEG_NAME=, DEFAULT SEGMENT X
 DEFSCH_NAME=, DEFAULT SCHEMA X
 SQLAREA_LOPAGE=, DDLCAT lopage X
 SQLAREA_PAGES=, pages X
 SQLAREA_PGSIZ=, page size X
 SQLAREA_DDNAME=, DDname X
 SQLINDX_LOPAGE=, DDLCATX lopage X
 SQLINDX_PAGES=, pages X
 SQLINDX_PGSIZ=, page size X
 SQLINDX_DDNAME=, DDname X
 SQLLOAD_LOPAGE=, DDLCATL lopage X
 SQLLOAD_PAGES=, pages X
 SQLLOAD_PGSIZ=, page size X
 SQLLOAD_DDNAME=, DDname X
 CATINDX_LOPAGE=, CINDEX lopage X
 CATINDX_PAGES=, pages X
 CATINDX_PGSIZ=, page size X
 CATINDX_DDNAME=, DDname X
 CATAREA_LOPAGE=, STANDARD lopage X
 CATAREA_PAGES=, pages X
 CATAREA_PGSIZ=, page size X
 CATAREA_DDNAME=, DDname X
 EXTINDX_LOPAGE=, EINDEX lopage X
 EXTINDX_PAGES=, pages X
 EXTINDX_PGSIZ=, page size X
 EXTINDX_DDNAME=, DDname X
 EXTAREA_LOPAGE=, EXTENDED lopage X
 EXTAREA_PAGES=, pages X
 EXTAREA_PGSIZ=, page size X
 EXTAREA_DDNAME=, DDname X
 DEFINDX_LOPAGE=, DINDEX lopage X
 DEFINDX_PAGES=, pages X
 DEFINDX_PGSIZ=, page size X

Installing the Gateway 5–15

Customizing the Stage1 Input

 DEFINDX_DDNAME=, DDname X
 DEFAREA_LOPAGE=, DDATA lopage X
 DEFAREA_PAGES=, pages X
 DEFAREA_PGSIZ=, page size X
 DEFAREA_DDNAME=, DDname X
 VOLSER= VOLSER

The following table describes the parameters in the IGWFIDMS statement:

IGWFIDMS
Parameters

Usage Default

INSTALL= Specifies whether the gateway is being
installed for first time (NEW) or if the
gateway has been previously installed
(UPGRADE).

If NEW is used, existing gateway catalogs are
deleted and new catalogs are created.

If UPGRADE is used, existing gateway
catalogs are preserved.

UPGRADE

IDMS_LOADLIB= The DSN of the CA-IDMS installation load
library.

IDMS_DCMSG= The DSN of the CA-IDMS installation DC
Message area, used in local mode processing
for file formatting.

IDMS_SECSGON The CA-IDMS cross memory connect security
signon option.

YES--Validate the user and password. The
 connect is aborted if validation fails.

NO--Do not validate the user or password.

 Caution: The user inherits the security
 profile associated with the CA-IDMS task id
 EDBCxxxx.

USER--Validate the user but not the
 password.

 Caution: The user must be defined to
 CA-IDMS with PASSWORD NOT
 ASSIGNED attribute.

YES

5–16 Installation and Operations Guide

Customizing the Stage1 Input

IGWFIDMS
Parameters

Usage Default

IDMS_SYSCTL= The DSN of the CA-IDMS SYSCTL for the
target CV of this install.

A single instance of the EDBC server can
communicate with multiple Central Versions.
The installation of EDBC requires
modification of a CV's DMCL and DBNAME
table, and therefore a SYSCTL dd statement,
to process the modifications under the CV's
control.

IDMS_CVNUM= The central verion number for the target CV
of this install.

NONE

IDMS_DISTSRC= The DSN of the CA-IDMS installation
distribution source library (contains the
members, TABLEDDL and VIEWDDL).

IDMS_MACLIB= The DSN of the CA-IDMS installation macro
library.

IDMS_OBJLIB= The DSN of the CA-IDMS installation object
library.

HLQ_PREFIX= The High Level Qualifier for all data sets to
be created.

HOT_CONNECT= Specifies whether a hot connection to
CA-IDMS should be established during
EDBC server initialization.

The HOT_CONNECT parameter is used to
set the logical symbol
IDMS_HOT_CONNECT to the specified
value.

YES

DASD_UNIT= The default unit specification for DASD. SYSDA

DBPROCS_MAX= Specifies the maximum number of DBPROCS
that can be run by a gateway user.

128

DBPROCS_MEMORY= Specifies the maximum amount of storage (K)
that can be allocated by a DBPROC.

1024

IIDMCL_BUFNAME= The buffer name to be used for all gateway
areas.

II_BUFFER

MBUF_PGSIZ= The largest page size specified for any
gateway area. This is used in the DMCL
buffer statement

4276

Installing the Gateway 5–17

Customizing the Stage1 Input

IGWFIDMS
Parameters

Usage Default

IBUF_PAGES= The initial number of buffer pages to be
specified in the DMCL buffer statement.

200

MBUF_PAGES= The maximum number of buffer pages to be
specified in the DMCL buffer statement.

1000

CDMSLIB= Supplies the name of the CA-IDMS
CDMSLIB library that will contain the new
DMCL and DBNAME tables generated
during the stage2 process.

None

CVDMCL_NAME= The name of your CV Global DMCL.

DBNAME_TABLE= The name of your CV Database Name Table.

DBA_LOADLIB= The DSN of your CA-IDMS DBA load
library. This is used for local mode
processing, it contains Global DMCL and
DBNAME table.

SYSTEM_DBNAME= The CV System DBNAME. SYSTEM

SYSTEM_OWNER= The schema name that will be the qualifier
for all the EDBC catalogs.

$EDBC

SECONDARY_CATALOG= NEW allocates a new secondary catalog. OLD
uses an existing secondary catalog.

NEW is typically recommended for the initial
EDBC implementaion. This ensures that
EDBC metadata and catalogs are maintained
independently of existing CA-IDMS database
areas. OLD is used when there is an existing
secondrary catalog (DDLCAT) that contains
SQL schemas defined for NETWORK
schemas.

Note: Installing EDBC metadata and catalogs
into SYSSQL is NOT RECOMMENDED.

NEW

SQL_DBNAME= The DBNAME (secondary catalog) where the
gateway catalogs will be created. When
SECONDARY_CATALOG=NEW is
specified, this value will be used as the name
of the new secondary catalog.

EDCSQL

SQLSEG_NAME= The segment name of the new gateway
catalog.

EDCSQL

5–18 Installation and Operations Guide

Customizing the Stage1 Input

IGWFIDMS
Parameters

Usage Default

CATSEG_NAME= The segment name of the new gateway
Standard Table Database Area(s).

EDBC

DEFSEQ_NAME= The segment name of the new gateway
Default Database Area.

EDBCDBA

DEFSCH_NAME= The SCHEMA name of the new gateway
Default Database Area.

$EDBCDBA

SQLAREA_LOPAGE= The low page number of the gateway SQL
Catalog DDLCAT Area.

100001

SQLAREA_PAGES= The number of pages for the gateway SQL
Catalog DDLCAT Area.

300

SQLAREA_PGSIZ= The page size of the gateway SQL Catalog
DDLCAT Area.

5492

SQLAREA_DDNAME= The DDname of the gateway SQL Catalog
DDLCAT Area.

IISQLF1

SQLINDX_LOPAGE= The low page number of the gateway SQL
Catalog DDLCATX Area.

100301

SQLINDX_PAGES= The number of pages for the gateway SQL
Catalog DDLCATX Area.

100

SQLINDX_PGSIZ= The page size of the gateway SQL Catalog
DDLCATX Area.

5492

SQLINDX_DDNAME= The DDname of the gateway SQL Catalog
DDLCATX Area.

IISQLF2

SQLLOAD_LOPAGE= The low page of the gateway SQL Catalog
DDLCATL Area.

100401

SQLLOAD_PAGES= The number of pages for the gateway SQL
Catalog DDLCATL Area.

50

SQLLOAD_PGSIZ= The page size of the gateway SQL Catalog
DDLCATL Area.

5492

SQLLOAD_DDNAME= The DDname of the gateway SQL Catalog
DDLCATL Area.

IISQLF3

CATINDX_LOPAGE= The low page number of the gateway
Standard Table CINDEX Area.

101001

CATINDX_PAGES= The number of pages for the gateway
Standard Table CINDEX Area.

100

Installing the Gateway 5–19

Customizing the Stage1 Input

IGWFIDMS
Parameters

Usage Default

CATINDX_PGSIZ= The page size of the gateway Standard Table
CINDEX Area.

4276

CATINDX_DDNAME= The DDname of the gateway Standard Table
CINDEX Area.

IICATF1

CATAREA_LOPAGE= The low page number of the gateway
Standard Table CATALOG area.

101101

CATAREA_PAGES= The number of pages for the gateway
Standard Table CATALOG Area.

500

CATAREA_PGSIZ= The page size of the gateway Standard Table
CATALOG Area.

4276

CATAREA_DDNAME= The DDname of the gateway Standard Table
CATALOG Area.

IICATF2

EXTINDX_LOPAGE= The low page number of the gateway
Standard Table EINDEX Area.

102001

EXTINDX_PAGES= The number of pages for the gateway
Standard Table EINDEX Area.

100

EXTINDX_PGSIZ= The page size of the gateway Standard Table
EINDEX Area.

4276

EXTINDX_DDNAME= The DDname of the gateway Standard Table
EINDEX Area.

IICATF3

EXTAREA_LOPAGE= The low page number of the gateway
Standard Table EXTENDED Area.

102101

EXTAREA_PAGES= The number of pages for the gateway
Standard Table EXTENDED Area.

500

EXTAREA_PGSIZ= The page size of the gateway Standard Table
EXTENDED Area.

4276

EXTAREA_DDNAME= The DDname of the gateway Standard Table
EXTENDED Area.

IICATF4

DEFINDX_LOPAGE= The low page number of the gateway
Standard Table DINDEX Area.

103001

DEFINDX_PAGES= The number of pages for the gateway
Standard Table DINDEX Area.

200

DEFINDX_PGSIZ= The page size of the gateway Standard Table
DINDEX Area.

4276

5–20 Installation and Operations Guide

Customizing the Stage1 Input

IGWFIDMS
Parameters

Usage Default

DEFINDX_DDNAME= The DDname of the gateway Standard Table
DINDEX Area.

IIDBAF1

DEFAREA_LOPAGE= The low page number of the gateway
Standard Table DDATA Area.

103201

DEFAREA_PAGES= The number of pages for the gateway
Standard Table DDATA Area.

800

DFAREA_PGSIZ= The page size of the gateway Standard Table
DDATA Area.

4276

DEFAREA_DDNAME= The DDname of the gateway Standard Table
DDATA Area.

IIDAF2

STORCLAS= SMS storage class to use for the allocation of
the CA-IDMS secondary catalog and EDBC
areas.

DASD_UNIT=
VOLSER=

VOLSER= The VOLSER for gateway database area
creation.

IGWFPSVR Statement: Specifying Protocol Server Parameters

The IGWFPSVR statement specifies the network parameters for the EDBC server
network interfaces: CCI, SNA LU0, SNA LU62, IBM TCP/IP, SNS/TCP, and
KNET TCP/IP. This statement is coded, assembled, and linkedited into load
module form during the installation process.

See the Install and Configure Communication Interfaces section of the
“Configuring the EDBC Server” chapter for additional information.

The IGWFPSVR statement can be repeated up to 32 times for each protocol
server type.

The IGWFPSVR statement is defined as follows:

Installing the Gateway 5–21

Customizing the Stage1 Input

IGWFPSVR TYPE=SNA_LU0, TYPE OF SERVER X
 MODETAB='EDCMODE', MODE TABLE X
 DLOGMOD='EDCLU0', DEFAULT LOGON MODE X
 ACB='EDCACBI1', ACB NAME X
 RUSIZE=4096, MAXIMUM RU SIZE X
 PLU=, KNET PLU NAME X
 PORT='134', PORT ADDRESS X
 INSTALL=I1, INSTALLATION CODE X
 PASS=' ', OPTIONAL PASSWORD X
 NODENAME=, LOGICAL UNIT NAME X
 USERID='TCPIP', IBM TCP/IP USERID X
 ENABLE=YES, GENERATE PROTOCOL PARMS X
 APPLID=, APPLICATION ID - SNS/TCP X
 SYSID=, SNS/TCP SUBSYSTEM ID X
 PRODID= CCI SUBSYSTEM ID

Customize the parameters for the IGWFPSVR statement as shown in the
following table. If you do not enter a value for a parameter, it defaults to the
value shown in the table. The system ignores values for non-selected protocols.

IGWFPSVR
Parameter

Usage Default

TYPE= Type of protocol server. The options are:

■ SNA_LU0 for SNA LU0

■ SNA_LU62 for SNA LU6.2

■ TCP_KNET for KNET TCP/IP

■ TCP_IBM for IBM TCP/IP

■ TCP_SNS for SNS/TCP

■ CCI for CAI CCI

SNA_LU0

MODETAB= SNA LU0 or SNA LU6.2 only:

Name of the VTAM mode table that contains the default
logon mode entry for this protocol server. Used to build the
APPL statement and create the VTAM logon mode table for
this protocol server.

EDCMODE

DLOGMOD= SNA LU0 or SNA LU6.2 only:

In conjunction with the MODETAB= parameter, which
defines the default logon mode to be used in establishing
sessions with this application.

EDCLU0

5–22 Installation and Operations Guide

Customizing the Stage1 Input

IGWFPSVR
Parameter

Usage Default

ACB= SNA LU0 or SNA LU6.2 only:

Name of the VTAM Access Control Block (ACB) used by the
protocol servers. Also used to create the APPL definition for
SNA protocol servers. This value is required to initialize the
protocol interfaces.

The value should not exceed eight characters. It must begin
with an alpha or national character.

EDCACBI1

RUSIZE= Sets the maximum RU size for the protocol servers.

This value should be consistent with your installation’s SNA
standards. The default value is recommended.

4096

PLU= KNET TCP/IP only:

This value is the VTAM ACBNAME used by the KNET
address space. The server must have access to the KNET
runtime library either through a STEPLIB or LNKLST
specification.

None

PORT= All TCP/IP protocols:

Value assigned for the port ID that is used to accept
connections from remote gateway users.

The port ID is an arbitrary value. Generally, avoid numbers
lower than 1024 as these tend to be reserved for well-known
TCP and UDP services.

If you have more than one EDBC installation within the same
OS/390 system, specify a unique port ID for each installation.

134

INSTALL= Two-character installation code for the EDBC server.

If unspecified, defaults to the value assigned to the
IGWFINET ID= parameter (see the IGWFINET Statement:
Specifying EDBC Parameters section).

I1

PASS= Password. None

Installing the Gateway 5–23

Customizing the Stage1 Input

IGWFPSVR
Parameter

Usage Default

NODENAME= SNA_LU0 and SNA_LU62 only:

Specifies the VTAM logical unit name for the associated ACB
name.

This parameter allows the LU name to differ from the ACB
name. If NODENAME= is not specified, it defaults to the
value of the ACB= parameter. If NODENAME= is specified
and ACB= is not specified, ACB= defaults to the
NODENAME= value. This parameter provides the label for
the VTAM APPL statement generated by the IIVP stage2
jobstream.

ACB=
parameter

USERID= IBM TCP/IP only:

This is the user ID of the IBM TCP/IP address space. The
statement default value is TCPIP, which is also the default
when installing IBM TCP/IP. Check with the system
programmer to determine if a value other than this default
was used.

TCPIP

ENABLE= Specifies whether the IGWFPSVR statement will be processed
or ignored during stage1. This parameter allows all protocol
servers to be defined without enabling them. The options are:

■ NO
IGWFPSVR statement is processed but the protocol server
is not enabled during the gateway initialization. During
stage1, results in a return code of 04.

■ YES
IGWFPSVR statement is processed. The protocol server is
enabled during the gateway initialization.

All protocol initialization parameters are placed in one load
module in EDBC.V2R3.NET.LOAD (IIPSERV). A member
that can recreate this load module is customized in the IIVP
stage2 jobstream. It is located in EDBC.V2R3.SAMPLE.CNTL
(ASMPSERV).

YES

APPLID= SNS/TCP only:

Specifies the application program name that is passed to
SNS/TCP. This name is used with the PASSWORD= value to
authorize access to SNS/TCP.

The name, if coded, must be an alphanumeric string up to 8
characters long.

Nulls

5–24 Installation and Operations Guide

Customizing the Stage1 Input

IGWFPSVR
Parameter

Usage Default

SYSID= SNS/TCP only:

Specifies the name of the SNS/TCP subsystem that is to be
invoked by the TCP_SNS protocol server.

The subsystem name is an alphanumeric string up to 4
characters long.

ACSS

PRODID= CCI only:

Applies only to the CCI system that is running. It must be a
unique 20 character maximum Product ID and unique within
the CCI system.

IGWFPIPE Statement: Specifying CA-IDMS LU62 Interface Parameters

The IGWFPIPE statement should only be specified if the CA-IDMS gateway is to
use the LU62 line driver. If the cross memory service interface is to be used, this
statement and its parameters should be deleted from the stage1 input stream.

Note: It is strongly recommended that the cross memory service interface be
used instead of the LU6.2 line driver. The cross memory interface provides many
advantages over the LU6.2 technology, including performance and functional
improvements as well as ease of installation.

The IGWFPIPE statement specifies the VTAM parameters for interfacing the
gateway to the CA-IDMS address space. This statement is coded, assembled, and
linkedited as module IIPIPE during the installation process. The jobstream which
assembles and linkedits IIPIPE is saved in the SAMPLE.CNTL library so users
can re-create it in the event of network changes.

Note: In addition to creating load module IIPIPE, this statement is used to
generate VTAM APPL and MODEENT macro statements during the IIVP stage1
processing. In stage2, the APPL statements are added as major node PIPE to the
VTAMLST library. The MODEENT statements are assembled and linkedited into
VTAMLIB library. The stage2 processing noted above are performed by the
stage2 job with the suffix P0. To insure that the stage2 processing conforms to
installation standards, the gateway installer should consult with network and/or
systems personnel before running the P0 job.

The IGWFPIPE statement parameters are as follows:
IGWFPIPE TYPE=IDMS, DBMS FOR PIPE X

INSTALL=, INSTALLATION ID X
EDBC_ACB=EDCALU62, EDBC SERVER PIPE ACB X
EDBC_ACBPASS=, EDBC SERVER ACB PASSWORD X
EDBC_NODENAME=NODELU62, EDBC SERVER ACB NODENAME X
IDMS_ACB=IDMSLU62, IDMS LU62 DRIVER ACB X

Installing the Gateway 5–25

Customizing the Stage1 Input

IDMS_ACBPASS=, IDMS LU62 ACB PASSWORD X
IDMS_NODENAME=IDMSPIPE, IDMS LU62 ACB NODENAME X
IDMS_LINE=SNALU62, IDMS LU62 LINE NAME X
IDMS_PTERM=PTVTU, IDMS LU62 PTERM PREFIX X
IDMS_LTERM=LTVTU, IDMS LU62 LTERM PREFIX X
IDMS_SIGNON=YES, LU62 SIGNON OPTION X
IDMS_TASKID=RSPD, IDMS TASK-CODE X
DLOGMODE=EDCLU62, DEFAULT LOGMODE X
MODETAB=EDCMODE, LOGMODE TABLE X
NUMLUS=64, IDMS LOGICAL TERMINALS X
RUSIZE=4096, RUSIZE X
ENABLE=YES ENABLE AT STARTUP

Customize the parameters for the IGWFPIPE statement as shown in the
following table. If you do not enter a value for a parameter, it defaults to the
value shown in the following table:

Parameters Usage Default

TYPE= DBMS of LU62 interface. Currently the only
option is CA-IDMS.

IDMS

EDBC_ACB= Name of the VTAM Access Control Block
(ACB) to be used by the EDBC server.

EDCALU62

EDBC_PASS= EDBC server ACB password. None

EDBC_NODENAME= Specifies the VTAM logical unit name for the
EDBC server ACB.

This parameter allows the LU name to differ
from the ACB name.

This parameter provides the label for the
VTAM APPL statement generated by the IIVP
stage2 jobstream.

EDBC_ACB=parameter

IDMS_ACB= Name of the VTAM Access Control Block
(ACB) to be used by the CA-IDMS LU62 line
driver.

IDMSPIPE

IDMS_ACBPASS= CA-IDMS ACB password. None

IDMS_NODENAME= Specifies the VTAM logical unit name
forIDMS_ACB= the associated IDMS ABC.

This parameter allows the LU name to differ
from the ACB name.

This parameter provides the label for the
VTAM APPL statement generated by the IIVP
stage2 jobstream.

IDMS ACB.parameter

5–26 Installation and Operations Guide

Customizing the Stage1 Input

Parameters Usage Default

IDMS_LINE= Specifies the name to be given to the CA-IDMS
LU62 line.

Used to create LINE macro definition for the
CA-IDMS sysgen.

SNALU62

IDMS_PTERM= Specifies the prefix value to use for naming the
LU62 driver physical terminals.

Used to create PTERM macro definitions for
the CA-IDMS sysgen.

Maximum of 5 characters.

PTVTU

IDMS_LTERM= Specifies the prefix value to use for naming the
LU62 driver logical terminals.

Used to create LTERM macro definitions for
the CA-IDMS sysgen. Maximum of 5
characters.

LTVTU

IDMS_TASKID= Specifies the task-code to use to invoke the
gateway transaction in the CA-IDMS CV.
Maximum of 4 characters.

RSPD

IDMS_SIGNON= Specifies whether the remote user name is to
be passed to CA-IDMS during connection
processing.

YES

DLOGMODE= In conjunction with the MODETAB=
parameter, defines the default logon mode
entry to be used for establishing LU62
sessions.

This parameter sets the DLOGMODE= value
for the VTAM APPL statement generated by
the IIVP stage2 jobstream.

EDCMODE

MODETAB= Name of the VTAM mode table that contains
the default logon mode entry for the LU62
session.

PIPEMODE

NUMLUS= Name of the VTAM mode table that contains
the default logon mode entry for the LU62
session.

64

Installing the Gateway 5–27

Customizing the Stage1 Input

Parameters Usage Default

RUSIZE= Sets the maximum RU size for the LU62 PIPE.

This value should be consistent with your
installation's SNA standards. The default value
is recommended.

This parameter sets the RUSIZES= value for
the VTAM MODEENT statement generated by
the IIVP stage2 jobstream.

4096

ENABLE= Specifies whether the CA-IDMS LU62 PIPE is
to be activated during EDBC server startup.

YES

IGWFPIPE Statement: Specifying EXCI Interface Parameters

The IGWFPIPE statement specifies the EXCI parameters required for interfacing
the gateway to the CICS address space. This statement generates the logical
symbols, II_EXCI_APPL_ID and II_EXCI_NET_NAME. These logicals are added
to IIPARM during stage2 processing.

The IGWFPIPE statement is as follows:
IGWFPIPE TYPE=EXCI, TYPE OF PIPE X
 APPLID=, APPLICATION ID X
 NETNAME= CONNECTION NETNAME

Customize the parameters for the IGWFPIPE statement as shown in the
following table. If you do not enter a value for a parameter, it defaults to the
value show in the following table:

IGWFPIPE
Parameter

Usage Default

TYPE= Specifies the type of pipe interface.

Note: This value must be entered as in
the above statement example.

EXCI

5–28 Installation and Operations Guide

Customizing the Stage1 Input

IGWFPIPE
Parameter

Usage Default

APPLID= Specifies the APPLID of the CICS
system to connect to. The gateway
passes this parameter as the value of the
CICS_applid for the ALLOCATE_PIPE
call to CICS. There must be a CICS
region active with this APPLID on the
same OS/390 host as the gateway or the
EXCI initialization will fail and will
display the message:
E_XCI010 II_EXCI_APPL_ID missing
or invalid. Unable to initialize
EXCI.

IICDCICS

NETNAME= Connection NETNAME value to use for
the INITIALIZE_USER call to CICS.
This parameter must correspond to the
NETNAME value specified on the
CONNECTION definition of the EXCI
pipe. An invalid NETNAME value will
generate the following error message:
EXCI013 OPEN_PIPE failed: Reason
= 609, Subreason-1 =104.

See the IBM document, CICS/ESA:
External CICS Interface (SC33-1390-00)
for a detailed explanation of the Reason
and Subreason codes.

BATCHCLI

Installing the Gateway 5–29

Customizing the Stage1 Input

IGWFBLD Statement: Specifying IIVP Sysgen Parameters

The IGWFBLD statement specifies global default IIVP parameters and builds the
IIVP stage2 jobstream.

Note: This statement must be last in the stage1 input.

The IGWFBLD statement is defined as follows:
IGWFBLD TYPE=GEN, GENERATE JOBSTREAM X
 RELEASE='EC IDMS 2.3/0112 (MVS.390/00)', RELEASE ID X
 CICSLIB=, CICS EXCI LOAD LIBRARY X
 CICSMAC=, CICS MACRO LIBRARY X
 LIST=NO, DON’T SHOW LISTING X
 LINKLIB=, DEFAULT LINKLIB X
 VTAMLIB=, DEFAULT VTAMLIB X
 PROCLIB=, DEFAULT PROCLIB X
 VTAMLST=, DEFAULT VTAMLST X
 SORTLIB=, DEFAULT SORTLIB X
 EDBC='EDBC.V2R3', EDBC DATASET PREFIX X
 UNIT=3380, EDBC DEFAULT UNITNAME X
 VOLSER=MVSVOL, EDBC DEFAULT VOLSER X
 PRODUCTS=(IDMSGW,EDBC), SPECIFY PRODUCTS X
 SYSDA='SYSDA', DEFAULT WORK UNIT X
 VTAMMAC='SYS1.MACLIB’, INPUT AMODGEN MACLIB X
 AMODGEN='SYS1.AMODGEN' INPUT AMODGEN MACLIB X
 ASMBLR='ASMA90', IBM ASSEMBLER X
 STORCLAS= SMS STORAGECLASS

Customize the parameters for the IGWFBLD statement as shown in the
following table:

Parameter Usage Default

TYPE= Type of IIVP sysgen:

■ GEN
The IIVP stage1 should produce the stage2
jobstream if the return code is no higher than
4. If the return code is higher than 4, some
default was taken that requires review.

■ NOGEN
The IIVP stage1 should not produce the
stage2 jobstream.

GEN

RELEASE= Release level of the gateway installation.

Note: This value must be entered as defined in
the Release Notes with the product tape.

None

CICSLIB= Supplies the name of the CICS EXCI load library.
This library will be included in the EDBC server
STEPLIB concatenation.

CICS.VXXX.SDFHEXCI

5–30 Installation and Operations Guide

Customizing the Stage1 Input

Parameter Usage Default

CICSMAC= Supplies the name of the CICS macro library used
to assemble EXCI interface procedures.

CICS.VXXX.SDFHMAC

LIST= Specifies whether the output of the IIVP stage1
should be a summary or a detail listing:

■ NO
Specifies only a summary listing, describing
each parameter and its default.

■ YES
Specifies an assembler listing showing how
each statement expanded to produce the
stage2 jobstream. Used for diagnosing errors
in the IIVP stage1 generation process.

NO

LINKLIB= Specifies the name of a data set in the
installation’s LNKLSTxx member of
SYS1.PARMLIB.

EDBC.V2R3.
BACK.LOAD

VTAMLIB= SNA LU0 or SNA LU62 only:
Name of the VTAM link library that is the target
for the mode table for the application used by the
SNA protocol servers.

EDBC.V2R3.
NET.LOAD

PROCLIB= Name of the OS/390 PROCLIB that is updated
with cataloged procedures that are specific to the
gateway.

EDBC.V2R3.
FILES.PROCLIB

VTAMLST= Name of the VTAMLST data set that is updated
with the VTAM application node for the
designated protocol server.

EDBC.V2R3.
SAMPLE.CNTL

SORTLIB= Name of SORTLIB used by the stage2 sysgen. SYS1.SORTLIB

PREFIX= Dataset prefix for the gateway installation data
sets. You must create an OS/390 alias for the
high-level index of the data sets if one does not
already exist.

The value for this parameter must match the
#PREFIX value as defined in the stage0 job.

EDBC.V2R3

UNIT= Name of the physical device where the
installation data sets will be allocated.

3380

VOLSER= Serial number of the volume on which the
installation data sets will be allocated.

MVSVOL

Installing the Gateway 5–31

The Stage1 Jobstream

Parameter Usage Default

PRODUCTS= Products that are to be customized for
installation, in parentheses, separated by a
comma.

Note: The valid values are IDMSGW and EDBC,
which must be defined.

(IDMSGW,EDBC)

SYSDA= OS/390 unit name used for workspace allocation. SYSDA

VTAMMAC= Name of VTAM macro library. SYS1.MACLIB

AMODGEN= Name of system macro library. SYS1.AMODGEN

ASMBLR= Specifies which IBM ASSEMBLER is to be used
by the stage2 SYSGEN.

Valid values are IEV90 and ASMA90.

ASMA90

STORCLAS= Specifies the SMS storage class to use for the
allocation of the Name Server files.

This value will override the UNIT= and
VOLSER= specifications.

UNIT=
VOLSER=

The Stage1 Jobstream
The stage1 jobstream uses the stage1 input, EDBC.V2R3.FILES.ASM and
EDBC.V2R3.FILES.MACLIB to produce the stage2 jobstream, a report, and a
listing.

To do this, you need to customize the stage1 jobstream in the data set with the
default name EDBC.V2R3.SAMPLE.CNTL(IGWFSTGS). The following section
details this procedure.

Customizing and Executing the Stage1 Jobstream

The following procedure customizes and executes the stage1 jobstream:

1. Use the ISPF editor to edit the member IGWFSTGS in data set
EDBC.V2R3.SAMPLE.CNTL.

– Add an installation job statement.

5–32 Installation and Operations Guide

The Stage1 Jobstream

– On the STAGE1 EXEC statement, customize the PREFIX parameter by
changing the #PREFIX string to the value of the gateway installation
data set prefix. If the value chosen is EDBC.V2R3, then use the following
ISPF editor command to customize this value:

 C '#PREFIX' 'EDBC.V2R3' ALL

 The name of the library AMODGEN may be different, depending on the
version of OS/390 you are running.

2. Submit the job for execution.

 The job gets a return code of 0 or 4. A return code of 4 will occur if you
specify ENABLE=NO for any protocol server.

This job produces the following:

– The IIVP jobstream.
It contains the following jobs, which are placed in data set
EDBC.V2R3.STAGE2.CNTL.

 IGWFVPA0
IGWFVPS0*
IGWFVPS1*
IGWFVPS2
IGWFVPS3
IGWFVPS4**
IGWFVPI0
IGWFVPP0***
IGWFVPN0
IGWFVPZ9

 *Jobs IGWFVPS0 and IGWFVPS1 are not generated if
INSTALL=UPGRADE is specified in the IGWFIDMS macro.

** Job IGWFVPS4 will be generated only when the cross memory
interface is being used (that is, IGWFPIPE is not specified)

*** Job IGWFVPP0 will be generated only when the LU62 interface is
being used (that is, IGWFPIPE is specified)

– SYSPRINT Stage1 Report.
This file contains a summary of all parameters and defaults selected. It
shows the products that have been selected for installation by the IIVP
jobstream and lists the jobs that were created in the IIVP jobstream.

– SYSLIN IIVP Jobstream Listing.
This file contains a listing of the IIVP jobstream. This listing is provided
for diagnostic and documentation purposes.

Installing the Gateway 5–33

Submitting the Stage2 Jobstream Jobs

Submitting the Stage2 Jobstream Jobs
This section summarizes the procedure you must use to edit and release each of
the jobs in the IIVP stage2 jobstream. The sections that follow these steps
describe each job in detail.

1. Edit the jobs as required, following site standards to add jobcards,
passwords, and user IDs.

2. Submit the jobs one at a time in the exact sequence specified below:

– IGWFVPA0 Job: Customizes logical symbols jobstream

– IGWFVPS0* Job: Allocates CA-IDMS gateway databases

– IGWFVPS1* Job: Creates the gateway system catalogs

– IGWFVPS2 Job: Populates the gateway system catalogs

– IGWFVPS3 Job: Builds sample database JCL

– IGWFVPS4** Job: Installs cross memory service programs

– IGWFVPI0 Job: Customizes server parameters

– IGWFVPN0 Job: Creates name server files

– IGWFVPP0*** Job: Customizes LU62 interface

– IGWFVPZ9 Job: Starts the EDBC server

* Jobs IGWFVPS0 and IGWFVPS1 are not generated if INSTALL=UPGRADE
 is specified in the IGWFIDMS macro.

**Job IGWFVPS4 is generated when the cross memory interface is used.

***Job IGWFVPP0 is generated when the LU62 interface is used.

3. Check the completion status of each job after it is released.

 Each job must complete before the next one begins.

4. If a job produces the expected return codes, release the next job.

5. If you encounter an error, make the necessary corrections and resubmit the
failed job.

Note: You can restart each job in the IIVP stage2 jobstream on a job boundary. If
you need to return to the stage1 step, you can do so without any harm. The
stage2 jobs delete any data sets that were previously created.

5–34 Installation and Operations Guide

Submitting the Stage2 Jobstream Jobs

Functions of Stage2 Jobs

The following sections describe each job in the IIVP stage2 jobstream.

IGWFVPA0 Job:
Customizing the
Logical Symbols
Jobstream

This job customizes the installation and run-time parameters that are called
logical symbols. The following table lists the steps executed by the following
IGWFPA0 job:

Stepname Description RETCODE

STEP010 Adds members to IIPARM PDS. 0

STEPS1nn Adds subsystem entries to
USERS.DATA file.

0 or 4

STEPU1nn Adds user entries to USERS.DATA
file.

0 or 4

The following table describes the libraries updated by IGWFVPA0 Job:

Datasets Updated Description of Dataset

EDBC.V2R3.FILES.IIPARM Logical symbol file.

EDBC.V2R3.FILES.USERS.DATA EDBC authorization file.

IGWFVPS0 Job:
Allocating CA-IDMS
Gateway Database
Files

This job uses IDCAMS and IEFBR14 to allocate all required database files.
STEP010 is optional and is coded as IEFBR14. To delete existing files change
IEFBR14 to IDCAMS.

STEP020 allocates the three files required for the gateway Secondary SQL
Catalog. Step030 allocates files for the gateway and EDBCDBA areas.

Job IGWFVPS0 is not generated if INSTALL=UPGRADE is specified in the
IGWFIDMS statement.

The following table describes the steps executed by IGWFVPS0 Job:

Stepname Description RETCODE

STEP010 IDCAMS delete files. 00

STEP020 IEFBR14 allocate SQL catalog. 00

STEP030 IEFBR14 allocate database files. 00

Installing the Gateway 5–35

Submitting the Stage2 Jobstream Jobs

IGWFVPS1 Job:
Creating CA-IDMS
Gateway Databases

This job uses IDMSBCF, MVS IEWL, and IDMSLOOK to define and initialize
all required gateway databases.

Steps 10-40 are optional and create the Secondary SQL Catalog called EDCSQL.
This catalog (IDMS Areas DDLCAT, DDLCATX and DDLCATLOD) can be used
instead of a user Secondary SQL Catalog. This catalog also contains the
definitions of the gateway system catalogs and all gateway user and schema
specifications.

Steps 050 through 080 define and create the gateway and EDBCDBA Segments,
Files, and Areas. The gateway segment contains one index and one data area for
the gateway Standard Catalogs (tables) and one index and one data area for the
extended catalogs.

The EDBCDBA segment consists of an index and one data area. By default,
gateway users will store their tables and other objects in this default database.

Job IGWFVPS1 is not generated if INSTALL=UPGRADE is specified in the
IGWFIDMS macro.

Note: This job will run in central mode when modifying the DMCL and
DBNAME table and local mode when formatting database areas.

5–36 Installation and Operations Guide

Submitting the Stage2 Jobstream Jobs

The following table describes the steps executed by IGWFVPS1 Job:

Stepname Description RETCODE

STEP010* Creates EDCSQL catalog. 00 or 04

STEP020* Modifies DBNAME table. 00 or 04

STEP030* Links DBNAME table. 00

STEP040* Modifies CV DMCL. 00 or 04

STEP050 Creates EDBC/EDBCDBA segments. 00 or 04

STEP060 Modifies CV DMCL. 00 or 04

STEP070 Links CV DMCL. 00

STEP080 Runs IDMSLOOK on NEW DMCL. 00

STEP090 Copies DMCL and DBNAME table to
CDMSLIB.

00

STEP100 Initializes (formats) EDCSQL files. 00

STEP110 Initializes (formats) EDCCAT and
EDCDBA files.

00

*These steps are not generated if SECONDARY_CATALOG = OLD is specified
 in the IGWFIDMS macro.

IGWFVPS2 Job:
Populating the
Gateway

This job completes the definition of the optional EDCSQL Secondary SQL
Catalog, creates the Standard/Extended Catalog definitions, populates the
Standard Catalogs and creates the EDBCDBA default SCHEMA.

Note: This job should run in central mode.

The following table describes the steps executed by IGWFVPS2 Job:

Stepname Description RETCODE

STEP010* Defines EDCSQL using TABLEDDL. 00

STEP020* Defines EDCSQL using VIEWDDL. 00

STEP025 Drops Standard Catalogs. 00 or 08

STEP030 Creates Standard Catalog. 00 or 04

STEP035 Drops Standard Views. 00 or 08

STEP040 Creates Standard Views. 00

STEP050* Creates ExtendedCatalog. 00

Installing the Gateway 5–37

Submitting the Stage2 Jobstream Jobs

Stepname Description RETCODE

STEP060* Creates Default SCHEMA. 00 or 04

STEP070 Updates EDCSQL statistics. 00

* These steps are not generated if INSTALL=UPGRADE is specified in the
 IGWFIDMS macro.

IGWFVPS3 Job:
Building the IIVP User
Database

This job creates and loads the IIVP sample database to use in verifying the
installation. Before this job is run, the CV must be recycled or a 'vary new copy'
must be done to refresh the new DMCL and Database Name Table created by
the S1 job.

If the return code is 8, check to see if the object being dropped does not exist. If
the object does not exist, a return code of 8 is correct.
The following table describes the steps executed by IGWFVPS3 Job:

Stepname Description RETCODE

STEP010 Customizes IIVPBIDM SQL script.

STEP020 Copies IIVPIDM script to Files.SQL.

STEP030 Loads and checks out sample database. 0 or 8

The EDBC Terminal Monitor uses scripts in the EDBC.V2R3.FILES.SQL data set
to create the sample database. These scripts cannot be used with IDMS’s
IDMSBCF. Cycle the CV to incorporate the new DMCL and DBNAME table load
modules for this job. Update the JCL that brings up the CV to include all
libraries.

IGWFVPS4 Job:
Install Cross Memory
Service Programs

This job installs the CA-IDMS cross memory transaction programs into the
library specified by the CMDSLIB=parameter of the IGWFIDMS macro. It also
generates ADD PROGRAM and TASK sysgen statements for these programs.

This job is not generated if the IGWFPIPE statement is included in the stage1
input stream.

The following table describes the steps executed by this job:

Stepname Description Retcode

STEP010 LKED transaction programs 0 or 4

STEP020 Store LKED JCL into SAMPLE.CNTL 0

STEP030 Generate ADD PROGRAM/TASK sysgen
statements and store into SAMPLE.CNTL

0

5–38 Installation and Operations Guide

Submitting the Stage2 Jobstream Jobs

IGWFVPI0 Job:
Customizing EDBC
Parameters

This job customizes EDBC parameters. If system libraries are not the target of
the steps in this process, you must copy the resulting files to the appropriate
libraries before you can initialize EDBC.

The following table describes the steps executed by IGWFVPI0 Job:

Stepname Description RETCODE

STEP010 Assembles the Network Load Module. 0

STEP015 Linkedits the Network Load Module. 0

STEP017 Creates the ASMPSERV JCL Member. 0

STEP020 Creates APPL definition for LU0. 0

STEP030 Creates procedures for EDBC. 0

STEP040 Assembles Mode Table. 0 or 8

STEP050 Linkedits Mode Table. 0 or 8

STEP060 Creates EDBC startup procedure. 0

STEP070 Creates batch JCL for the EDBC server. 0

STEP080 Customizes installation JCL. 0

STEP090 Customizes IIPARM Clist. 0

STEP100 Customizes database procedure JCL. 0

You may get a return code of 8 for STEP040 and STEP050 if there are no SNA
protocols being generated.

The JCL created in STEP060 is identical with the JCL created in STEP030. The
copy is placed unconditionally in the EDBC proclib. If you want, you can place
the copy created in STEP030 into an system proclib as well.

The following libraries are updated by theIGWFVPI0 Job:

■ EDBC.V2R3.NET.LOAD

■ EDBC.V2R3.SAMPLE.CNTL

■ EDBC.V2R3.FILES.PROCLIB

Installing the Gateway 5–39

Submitting the Stage2 Jobstream Jobs

IGWFVPN0 Job:
Creating Name
Server Files

The IGWFVPN0 job creates the data sets required by the name server
component of the OS/390 EDBC server.

The following table describes the steps executed by IGWFVPN0 Job:

Stepname Description RETCODE

STEP010 Deletes existing name server data sets. 0

STEP020 Allocates the name server data sets as follows:

Dataset Size
--

prefix.FILES.NAME.IICOMSRV.id 1 Trk
prefix.FILES.NAME.IIINGRES.id 1 Trk
prefix.FILES.NAME.IILOGIN.id 1 Trk
prefix.FILES.NAME.IINODE.id 1 Trk
prefix.FILES.NAME.IIDB2.id 1 Trk
prefix.FILES.NAME.IIDCOM.id 1 Trk
prefix.FILES.NAME.IIIDMS.id 1 Trk
prefix.FILES.NAME.IIIMS.id 1 Trk
prefix.FILES.NAME.IIVSAM.id 1 Trk

where:

prefix is value of PREFIX= parameter

id is the two character installation code for the
gateway installation

0

STEP030 Initializes prefix.FILES.NAME.IIDB2.id. 0

STEP040 Initializes prefix.FILES.NAME.IIIMS.id. 0

STEP050 Initializes prefix.FILES.NAME.IIVSAM.id. 0

STEP060 Initializes prefix.FILES.NAME.IIDCOM.id. 0

STEP070 Initializes prefix.FILES.NAME.IIIDM.id. 0

STEP080 Adds IDMS to the server class file. 0

5–40 Installation and Operations Guide

Submitting the Stage2 Jobstream Jobs

IGWFVPP0 Job:
Customizing the
CA-IDMS LU62 PIPE

This job installs the CA-DMS LU62 PIPE. It updates the VTAMLST and
VTAMLIB libraries and generates CA-IDMS sysgen statements. The installer
should consult with network and IDMS systems personnel before running this
job.

The following table describes the steps executed by IGWFVPP0 Job:

Stepname Description RETCODE

STEP010 Assembles module IIPIPE. 0

STEP020 Linkedits module IIPIPE. 0

STEP030 Creates the ASMPIPE JCL member. 0

STEP040 Creates PIPE APPL definitions. 0

STEP050 Creates PIPE MODEENT definitions. 0

STEP060 Assembles PIPE MODEENT definitions. 0

STEP070 Linkedits PIPE LOGMODE entry. 0

STEP080 Creates PIPE ASMLOGM JCL member. 0

STEP090 Creates CA-IDMS IDMScvnum member. 0

STEP100 Linkedits CA-IDMS taskid transaction
program.

4

STEP110 Creates linkedit CA-IDMS taskid
transaction program JCL.

0

The following table describes the libraries updated by IGWFVPP0 Job:

Datasets Updated Comments

Library specified by IGWFBLD VTAMLIB=
or
EDBC.V2R3.SAMPLE.CNTL

STEP020

Library specified by IGWFBLD VTAMLST=
or
EDBC.V2R3.NET.LOAD

STEP070

Library specified by EDBC.V2R3.SAMPLE.CNTL STEP090
STEP110

Installing the Gateway 5–41

Final Installation Procedures

IGWFVPZ9 JOB:
Starting the EDBC
Server

The IGWFVPZ9 job starts the EDBC server as a batch job.

The EDBC.V2R3.BACK.LOAD and EDBC.V2R3.NET.LOAD libraries must be
APF authorized before this job is submitted for execution. If they are not
authorized, the server will be terminated with an S047 abend.

Stepname Description RETCODE

EDBCSVR Starts the EDBC server 0

Final Installation Procedures
This section outlines the remaining installation procedures.

Completing the Installation

The next two sections describe how to update members of SYS1.PARMLIB.

Defining the
Gateway Subsystem
to OS/390

To define the EDBC subsystem to OS/390, add an entry like the following to
the IEFSSNxx member of SYS1.PARMLIB:

EDBC FOR EDBC SERVER

You can change the name of the EDBC subsystem from the default value, EDBC.
The value you specify for the subsystem in IEFSSNxx must match the values you
specified for the INSTALL= parameter of the IGWFPSVR macro, and the ID=
parameter of the IGWFINET macro.

APF Authorizing the
Gateway Load
Libraries

To allow EDBC to initialize successfully, you must add the following data sets
to the IEAAPFxx member in SYS1.PARMLIB. These data sets have the default
names and parameters shown below:

EDBC.V2R3.BACK.LOAD volser,

EDBC.V2R3.NET.LOAD volser,

The value for the volser must match the same value specified on the VOLSER
parameter in the IGWFBLD macro.

5–42 Installation and Operations Guide

Customizing the TSO Logon Procedure

Note: These libraries may be APF authorized temporarily using the OS/390
SETPROG APF operator command. Temporarily authorizing these libraries
permits the gateway to be started without the need for an IPL. At the first
opportunity, however, these libraries should be permanently authorized by
IPLing the system using the updated IEFSSNxx and IEAAPFxx members.

Customizing the TSO Logon Procedure
You must allocate the data sets that are required to execute the CA-IDMS
gateway from your TSO session. By modifying your TSO logon procedure, you
can access the gateway from your TSO session.

1. To customize your TSO logon procedure, add the following DD statements
to the TSO logon procedure, or place them in the DD concatenation sequence
if the DD statement already exists. The data sets are shown here with the
default names.

 //STEPLIB DD DSN=EDBC.V2R3.FRONT.LOAD,DISP=SHR
 // DD DSN=EDBC.V2R3.BACK.LOAD,DISP=SHR
 // DD DSN=EDBC.V2R3.NET.LOAD,DISP=SHR
 .
 ... see the following Note
 .
 //SYSPROC DD DSN=EDBC.V2R3.FILES.CLIST,DISP=SHR
 //SYSCTL DD DISP=SHR,DSN=idms.sysctl

2. Copy the IIPARM Clist into a location where TSO can access the SYSPROC
concatenation.

Note: CA-IDMS load libraries must be added to the STEPLIB concatenation if
they are not in the LINKLIST.

Verifying the Installation Functionality
You can now test access to the sample CA-IDMS database that was created
during the installation procedure. Verify local access to this sample database
using the Terminal Monitor, which runs in a TSO address space. The CA-IDMS
gateway also runs under TSO when accessed locally.

1. Log on to TSO as the gateway DBA using the revised logon procedure
created above.

2. In ISPF, select option 6 from the Primary Option Menu to enter TSO
commands.

Installing the Gateway 5–43

Verifying the Installation Functionality

3. Issue a command such as the following to define TSO access to the CA-IDMS
gateway. This example uses the defaults for the server subsystem, EDBC,
and for the data set prefix, EDBC.V2R3.

 iiparm isvr(edbc) prefix(EDBC.V2R3) sabe(idms)

 then press Enter.

4. When the Clist ends successfully, issue the following command to invoke the
Terminal Monitor and connect to the sample database. This example uses the
default value for the CA-IDMS subsystem, IDMS. The final parameter is the
server class, which must be IDMS.

 sql idms/idms

 then press Enter.

5. To see the tables in the sample database, type the following command.

 help \g

6. To execute the sample queries for the sample database, type the following:

 \i 'EDBC.V2R3.files.sql(iivpqidm)'

7. To quit the Terminal Monitor, type:

 \q

5–44 Installation and Operations Guide

Chapter

6 Configuring the EDBC Server

This chapter describes the procedures to:

■ Install and configure communication interfaces

■ Enable and test security interfaces

This chapter also describes EDBC configuration options:

■ Force Inactive Timeout

■ Local Time Zone

■ Alternate Translation Tables

Install and Configure Communication Interfaces
EDBC supports the SNA_LU0, SNA_LU62, IBM TCP/IP, SNS TCP/IP, KNET
TCP/IP, and CCI network protocols. The EDBC network configuration is
defined when EDBC is installed by specifications in the stage1 IGWFPSRV
statement.

Modifications to the network do not require that EDBC be reinstalled. Additions
or changes can be made by updating and submitting job ASMPSERV in the
SAMPLE.CNTL library.

EDBC network configuration is maintained as a load module with a default
name of IIPSERV. An installation can maintain multiple network configurations.
The network configuration used by EDBC is controlled by logical symbol
II_NET_LMOD. The default is:

II_NET_LMOD = IIPSERV;

SNA LU0 for OS/390
EDBC supports the IBM SNA LU0 protocol on OS/390. This can be used for
OS/390-to-OS/390 access as well as access from other platforms to OS/390.

Configuring the EDBC Server 6–1

SNA LU0 for OS/390

Requirements

The gateway is certified for IBM OS/390 SNA LU0 with the following
configuration: ACF/VTAM version 3.1.1 or higher.

Installation and Configuration

To install SNA LU0 support for the EDBC server, code the following parameters on the
IGWFPSVR statement:

TYPE=SNA_LU0
ACB=
NODENAME=
DLOGMODE=
MODETAB=
ENABLE=

VTAM ACB and LOGMODE definitions for the SNA_LU0 logical unit are
generated and placed in the SAMPLE.CNTL library as members RTIAPPL and
RTIMODE. These definitions should be given to personnel responsible for
VTAM. The SNA_LU0 interface cannot be started until the VTAMLST and
VTAMLIB libraries have been updated with the generated ACB and LOGMODE
definitions and the newly defined ACB activated.

Starting and Stopping the SNA_LU0 Interface

The following logical in the ISVREDBC member of EDBC.V2R3.FILES.IIPARM
determines whether the SNA_LU0 network interface is to be automatically
started during server initialization:

II_PROTOCOL_SNA_LU0 = YES;

The ENABLE= parameter of the stage1 IGWFPSVR statement determines the
value of this logical.

The alternative to starting the interface during server initialization is to activate
it dynamically by issuing the following Modify operator command:

F EDBC,ACT,PROT=SNA_LU0

To stop the interface, issue the following Modify operator command:

F EDBC,INACT,PROT=SNA_LU0

Note: The above command terminates active SNA_LU0 connections.

6–2 Installation and Operations Guide

SNA LU0 for OS/390

Connecting from a Remote Client

To connect to the EDBC server using the SNA_LU0 interface, a vnode entry must
be created on the EDBC client. See the “Managing Network Communications”
chapter in EDBC Getting Started for information on how to create vnode entries
for SNA_LU0.

SNA LU0 Abend Codes and Messages

Various internal error conditions can cause the SNA LU0 interface to terminate
abnormally (abend). When an abend occurs, the EDBC server continues
functioning; however, the SNA LU0 interface stops functioning. The abend code
and summary information generally appear on the OS/390 console and the
server JES log. The active load module displayed in the summary information is
IILU0PS. The following table lists the possible abend codes:

Abend GTF Error Message Program

1001
1002
1003
1004
1005
1006

ERROR WHEN SETTING UP RPL
NO MATCHING PCB ADDR FOUND
NO CONNECT PWQE FOUND FOR THIS PCB
OPNDST ACCEPT MACRO ERROR
CLSDST MACRO ERROR
INVALID USER DATA – SESSION REJECTED

PS0PSIN
Session Init

1001
1002
1003
1004
1005
1006
1008
1009
1010
1011

ERROR WHEN SETTING UP RPL
ERROR WHEN REISSUING RECEIVE ANY
RECEIVED A NEGATIVE RESPONSE
NO PCB FOUND FOR RCVD MSG WITH SAME SESSION ID
ERROR WHEN CHECKING RPL FROM RCV ANY
ERROR WHEN BUILDING PWQE
ERROR WHEN CHECKING RPL FOR NEG RESPONSE
ERROR WHEN CHECKING RPL FROM SENDING NEG RESP
RU RECEIVED LARGER THAN MAX BUFFER SIZE
BUFFER PUT ERROR – PROBABLE BUCB OVERLAY

PS0RCVA
Receive Any

1001 ERROR WHEN GETTING DATA FROM BUFFER PS0RECV
Receive Req

1002
1002

ERROR WHEN SETTING UP RPL
ERROR WHEN ISSUING SEND

PS0SEND
Send Request

Configuring the EDBC Server 6–3

SNA LU62 for OS/390

SNA LU62 for OS/390
The EDBC supports for the IBM SNA LU62 protocol on OS/390. This can be
used for OS/390-to-OS/390 access as well as access from other platforms to
OS/390.

Requirements

The gateway has been certified for IBM OS/390 SNA LU62 support with the
following configuration: ACF/VTAM version 3.2 or higher.

Installation and Configuration

To install SNA LU62 support for the EDBC server, code the following parameters on the
stage1 IGWFPSVR statement:

TYPE=SNA_LU62
ACB=
NODENAME=
DLOGMODE=
MODETAB=
ENABLE=

VTAM ACB and LOGMODE definitions for the SNA_LU62 logical unit are
generated and placed in the SAMPLE.CNTL library as members RTIAPPL and
RTIMODE. These definitions should be given to personnel responsible for
VTAM. The SNA_LU0 interface cannot be started until the VTAMLST and
VTAMLIB libraries have been updated with the generated ACB and LOGMODE
definitions and the newly defined ACB activated.

Starting and Stopping the SNA_LU62 Interface

The following logical in the ISVREDBC member of EDBC.V2R3.FILES.IIPARM
determines whether the SNA_LU62 network interface is to be automatically
started during server initialization:

II_PROTOCOL_SNA_LU62 = YES;

The ENABLE= parameter of the stage1 IGWFPSVR statement determines the
value of this logical.

The alternative to starting the interface during server initialization is to activate
it dynamically by issuing the following Modify operator command:

F EDBC,ACT,PROT=SNA_LU62

6–4 Installation and Operations Guide

SNA LU62 for OS/390

To stop the interface, issue the following Modify operator command:

F EDBC,INACT,PROT=SNA_LU62

Note: The above command terminates active SNA_LU62 connections.

Connecting from a Remote Client

To connect to the EDBC server using the SNA_LU62 interface, a vnode entry
must be created on the EDBC client. See the “Managing Network
Communications” chapter in EDBC Getting Started for information on how to
create vnode entries for SNA_LU62.

SNA LU6.2 VTAM Logmode Entries

Two types of SNA LU6.2 LOGMODE entries can be created. They are as follows:

■ Independent Logical Unit

 This type of logical unit supports parallel sessions. Multiple SNA LU6.2
sessions are multiplexed over a single logical unit.

 The following SNA mode table entry is required to support an independent
logical unit:
MODEENT LOGMODE=EDCLU62, MODE TABLE NAME X
 TYPE=0, X
 FMPROF=X’13’, NEGOTIABLE BIND X
 TSPROF=X’07’, REQUIRED FOR LU 6.2 SESSION X
 PRIPROT=X’B0’, REQUIRED FOR LU 6.2 SESSION X
 SECPROT=X’B0’, X
 COMPROT=X’D0B1’, X
 PSDNPAC=X’01’, X
 SSDNPAC=X’01’, X
 SRCVPAC=X’01’, X
 RUSIZES=X’8989’, MAX RU SIZE=(8*2**9)=4096 X
 PSERVIC=X’060200000000000000000300’

■ Dependent Logical Unit

 This type of logical unit supports single sessions. A single SNA LU6.2
session is supported over a single logical unit.

 The following SNA mode table entry is required to support a dependent
logical unit:
MODEENT LOGMODE=EDCLU62, MODE TABLE NAME X
 TYPE=0, X
 FMPROF=X’13’, NEGOTIABLE BIND X
 TSPROF=X’07’, REQUIRED FOR LU 6.2 SESSION X
 PRIPROT=X’B0’, REQUIRED FOR LU 6.2 SESSION X
 SECPROT=X’B0’, X
 COMPROT=X’D0B1’, X
 PSDNPAC=X’01’, X
 SSDNPAC=X’01’, X
 SRCVPAC=X’01’, X

Configuring the EDBC Server 6–5

KNET TCP/IP for OS/390

 RUSIZES=X’8989’, MAX RU SIZE=(8*2**9)=4096 X
 PSERVIC=X’060200000000000000000C00’

Check the vendor of the client API to determine which mode table entry should
be used. The stage2 generates a sample mode table entry for SNA LU6.2 that
assumes that the client supports parallel sessions. If this is not correct, modify
the ASMRMODE member of SAMPL.CNTL to reflect the correct mode table
type.

Sense Code 08120007 and Possible Loop in VTAM

If you use the SNA LU 6.2 interface with many concurrent users, problems may
occur where VTAM rejects incoming BINDS with a sense code of 08120007. This
is a VTAM configuration issue. Should this occur, check the NCP gen to ensure
that sufficient resources have been allocated by VTAM to support the SNA
LU6.2 requirements. You can allocate resources for specific independent logical
units by coding the TESSCB parameter on the LU statements defining that
particular logical unit. Or a pool of resources can be allocated to be used by any
independent logical unit by coding the AUXADDR and ADDSESS parameters on
the BUILD statement of the NCP gen. In either case, you should specify values
for the parameters that at least equal the desired maximum concurrent users.

KNET TCP/IP for OS/390
The network support for Fibronics KNET OS/390 TCP/IP allows EDBC to
communicate with other platforms across a TCP/IP network.

Requirements

The server is certified for KNET OS/390 TCP/IP support with the following
configuration: KNET TCP/IP for OS/390 Release 1.3 (or higher).

EDBC uses the KNET API, which implements an SNA interface from the EDBC
to the KNET address space. The KNET address space communicates directly
with the Fibronics K200 or K2000 controller to provide connectivity to the
workstations attached to an Ethernet LAN.

Installation and Configuration

To install TCP_KNET support for the EDBC server, code the following parameters on the
stage1 IGWFPSVR statement:

6–6 Installation and Operations Guide

IBM TCP/IP for OS/390

TYPE=TCP_KNET
PLU=
PORT=
ENABLE=

Starting and Stopping the TCP_KNET Interface

The following logical in the ISVREDBC member of EDBC.V2R3.FILES.IIPARM
determines whether the TCP_KNET network interface is to be automatically
started during server initialization:

II_PROTOCOL_TCP_KNET = YES;

The ENABLE= parameter of the stage1 IGWFPSVR statement determines the
value of this logical.

The alternative to starting the interface during server initialization is to activate
it dynamically by issuing the following Modify operator command:

F EDBC,ACT,PROT=TCP_KNET

To stop the interface, issue the following Modify operator command:

F EDBC,INACT,PROT=TCP_KNET

Note: The above command terminates active TCP_KNET connections.

Connecting from a Remote Client

To connect to the EDBC server using the TCP_KNET interface, a vnode entry
must be created on the EDBC client. See the “Managing Network
Communications” chapter in EDBC Getting Started for information on how to
create vnode entries for TCP_KNET.

IBM TCP/IP for OS/390
The network protocol support for IBM’s OS/390 TCP/IP product enables EDBC
to communicate with other platforms across a TCP/IP network.

Requirements

The gateway is certified for IBM OS/390 TCP/IP support with the following
configuration:

Configuring the EDBC Server 6–7

IBM TCP/IP for OS/390

■ MVS/ESA, OS/390, or z/OS

■ IBM TCP/IP for OS/390 V3R2 and above

Installation and Configuration

To install IBM TCP/IP support for the EDBC server, code the following parameters on the
stage1 IGWFPSVR statement:

TYPE=TCP_IBM
PORT=
USERID=
ENABLE=

Starting and Stopping the TCP_IBM Interface

The following logical in the ISVREDBC member of EDBC.V2R3.FILES.IIPARM
determines whether the TCP_IBM network interface is to be automatically
started during server initialization:

II_PROTOCOL_TCP_IBM = YES;

The ENABLE= parameter of the stage1 IGWFPSVR statement determines the
value of this logical.

The alternative to starting the interface during server initialization is to activate
it dynamically by issuing the following Modify operator command:

F EDBC,ACT,PROT=TCP_IBM

To stop the interface, issue the following Modify operator command:

F EDBC,INACT,PROT=TCP_IBM

Note: The above command terminates active TCP_IBM connections.

Connecting from a Remote Client

To connect to the EDBC server using the TCP_IBM interface, a vnode entry must
be created on the EDBC client. See the “Managing Network Communications”
chapter in EDBC Getting Started for information on how to create vnode entries
for TCP_IBM.

6–8 Installation and Operations Guide

CCI for OS/390

IBM TCP/IP Problem Diagnosis

The EDBC TCP/IP protocol server issues an error message whenever an IBM
TCP/IP error occurs. The format of the error message is as follows:

subsysid: TCP-IBM "function" RETCODE = -00000001 ERRNO= error number

where:

subsysid: = EDBC subsystem id
function = TCP/IP operation (RECEIVE, SEND, LISTEN, and so on)
error number = TCP/IP error return code

See the IBM TCP/IP Application Programming Interface Reference for a complete
description of error return codes.

CCI for OS/390
EDBC supports the CCI protocol on OS/390. This is used for OS/390-to-OS/390
access.

Requirements

The gateway has been certified for OS/390 CCI support with the following
configuration: CA90s level 9312 or higher.

Installation and Configuration

To install CCI support for the EDBC server, code the following parameters on the stage1
IGWFPSVR statement:

TYPE=CCI
PRODID=
ENABLE=

Starting and Stopping the CCI Interface

The following logical in the ISVREDBC member of EDBC.V2R3.FILES.IIPARM
determines if the CCI network interface is to be automatically started during
server initialization:

II_PROTOCOL_CCI = YES;

Configuring the EDBC Server 6–9

CCI for OS/390

The ENABLE= parameter of the stage1 IGWFPSVR statement determines the
value of this logical.

The alternative to starting the interface during server initialization is to activate
it dynamically by issuing the following Modify operator command:

F EDBC,ACT,PROT=CCI

To stop the interface, issue the following Modify operator command:

F EDBC,INACT,PROT=CCI

Note: The above command terminates active CCI connections.

Connecting from a CCI Client

The utility, EDBCNETU, is used to configure a client. The node information for
CCI is as follows:
Protocol: CCI
Remote Node Address: CCI System ID of other node
Remote Listen Address CCI EDBC subsystem ID

The Remote Node Address specifies the System ID of the CCI system that you
are connecting to. The Remote Listen Address is the Subsystem ID of the EDBC
server.

CCI Abend Codes and Messages

Various internal error conditions can cause the CCI interface to abnormally
terminate (abend). When an abend occurs, EDBC continues functioning;
however, the CCI interface stops functioning and no new connections can be
made until the CCI interface is restarted. The abend code and summary
information usually appears on the OS/390 console and the gateway JES log.
The active load module displayed in the summary information is IICCIPS. The
following table lists the possible abend codes for the CCI protocol server:

Abend GTF Error Message Program

1110 RU RECEIVED LARGER THAN MAX
BUFFER SIZE

PSCRCVA

1111 BUFFER PUT ERROR - PROBABLE BUCB
OVERLAY

Receive any

1202 ERROR WHEN GETTING DATA FROM
BUFFER

PSCDFSM
receive req

6–10 Installation and Operations Guide

SNS/TCP for OS/390

SNS/TCP for OS/390
The network protocol support for SNS/TCP on OS/390 is functionally the same
as IBM's OS/390 TCP/IP protocol support. That is, it allows EDBC to
communicate with other platforms across a TCP/IP network.

Requirements

The gateway has been certified for SNS/TCP with the following configuration:
SNS/TCP Version 2.0 or higher.

Installation and Configuration

To install SNS TCP/IP support for the EDBC server, code the following
parameters on the stage1 IGWFPSVR statement:

TYPE=TCP_SNS
APPLID=
PORT=
SYSID=
ENABLE=

Starting and Stopping the TCP_SNS Interface

The following logical in the ISVREDBC member of EDBC.V2R3.FILES.IIPARM
determines whether the TCP_SNS network interface is to be automatically
started during server initialization:

II_PROTOCOL_TCP_SNS = YES;

The ENABLE= parameter of the stage1 IGWFPSVR statement determines the
value of this logical.

The alternative to starting the interface during server initialization is to activate
it dynamically by issuing the following Modify operator command:

F EDBC,ACT,PROT=TCP_SNS

To stop the interface, issue the following Modify operator command:

F EDBC,INACT,PROT=TCP_SNS

Note: The above command terminates active TCP_SNS connections.

Configuring the EDBC Server 6–11

Enable and Test Security Interfaces

Connecting from a Remote Client

To connect to the EDBC server using the TCP_SNS interface, a vnode entry must
be created on the EDBC client. See the “Managing Network Communications”
chapter in EDBC Getting Started for information on how to create vnode entries
for TCP_SNS.

Enable and Test Security Interfaces
EDBC interfaces to IBM’s Resource Access Control Facility (RACF) and the
Computer Associates’ Access Control Facility (CA-ACF2) and Top Secret
Security (CA-TSS) security products. The security interface is activated by the
following logical in the ISVREDBC member of EDBC.V2R3.FILES.IIPARM:

II_SECURITY =

The SECURITY = parameter of the stage1 IGWFINET statement determines the
value of this logical. The options are RACF, ACF2, TSS or NONE.

The interface to the security products occurs in an exit routine that is invoked
when a user attempts to connect to EDBC. The exit routine in turn calls the
security product to authenticate the user. There is an exit routine for each of the
supported security products.

The sources for these routines are distributed in the FILES.ASM library as
members IIRACF, IIACF2, and IITSS.

IBM Resource Access Control Facility (RACF)
EDBC supports IBM’s Resource Access Control Facility (RACF). This facility
performs authentication checking and resource control for an OS/390 system. It
requires that a remote client be authenticated by RACF before a connection is
established.

When RACF security is requested, the EDBC server uses RACF to validate the
user ID and password. This validation occurs during connection processing.

If the validation fails, then the connection request is rejected and RACF issues
message ICH408I. If the validation of the user ID/password is successful, then
RACF returns a pointer to a security control block.

The interface to RACF uses the IBM RACINIT interface to issue the logon
validation requests from EDBC clients to RACF.

6–12 Installation and Operations Guide

IBM Resource Access Control Facility (RACF)

Installing and Customizing the RACF Interface

This section describes how to customize EDBC to enable RACF security.
Complete the following steps:

1. Install the EDBC server.

2. Create a RACF profile for the EDBC server.

3. Create a RACF profile for each EDBC client.

4. Define the user created in the RACF profile to EDBC.

5. Create a vnode definition on the EDBC client.

6. Set the II_SECURITY logical symbol.

7. Test the RACF interface.

Creating a RACF
Profile for the Server

Create a RACF identifier for the EDBC task.

Creating a RACF
Profile for Each
Gateway Client

Create a RACF profile for each user who will access the server. This profile
should have the same characteristics as that of a TSO user.

Defining the User to
EDBC

The user created in the RACF profile definition must be defined to the server.
See the “Maintaining the Gateway” chapter for instructions on adding new
users.

Creating a Vnode
on the Client

On the client use the EDBC Network utility to create a vnode entry.

See EDBC Getting Started for instructions on creating vnodes.

Setting the
II_SECURITY Logical
Symbol for the EDBC
Server

To enable the RACF security interface, add the following logical symbol to the
ISVREDBC member in EDBC.V2R3.FILES.IIPARM.

II_SECURITY = RACF;

Testing the RACF
Interface

Use the following procedure to test the RACF interface:

1. Start the EDBC server.

2. On the EDBC client, invoke the EDBC Network utility.

3. Right-click the newly created vnode and select SQL Test.

4. If the SQL test panel appears, the RACF interface has been successfully
installed.

Configuring the EDBC Server 6–13

Computer Associates Access Control Facility 2

Computer Associates Access Control Facility 2
The server supports the Computer Associates Access Control Facility 2
(CA-ACF2). This facility performs authentication checking and resource control
for the OS/390 system. It ensures that a remote client is authenticated before a
connection is established. If the user ID/password fails, then the remote
connection request is rejected. If the user ID/password is valid, the connection
processing continues.

The interface to CA-ACF2 uses the IBM Security Access Facility (SAF) to issue
the logon validation requests from the EDBC client to CA-ACF2.

Installing and Customizing the CA-ACF2 Interface

To enable the CA-ACF2 security interface, complete the following steps:

1. Create a CA-ACF2 Logon IDentifier (LID) for the server.

2. Create a CA-ACF2 protection record.

3. Create a CA-ACF2 LID for each user.

4. Define the user to the server.

5. Create a vnode for each EDBC client.

6. Set the II_SECURITY logical symbol for the server.

7. Test the CA-ACF2 interface.

Creating a Server
CA-ACF2 LID

Create a CA-ACF2 identifier for the EDBC task. It should have the same
characteristics as CICS. Verify that the following fields are set:

■ MUSASS

■ STC

Creating a CA-ACF2
LID for Each User

Create a CA-ACF2 LID for each user who will access the server. This LID
should have the same characteristics as that of a TSO user.

Defining the User to
EDBC

The user created in the RACF profile definition must be defined to the server.
See the “Maintaining the Gateway” chapter for instructions on adding new
users.

Creating a Vnode on
the Client

On the client use the EDBC Network utility to create a vnode entry.

See EDBC Getting Started for instructions on creating vnodes.

6–14 Installation and Operations Guide

Computer Associates Top Secret Security Facility

Setting the
II_SECURITY Logical
Symbol for the EDBC
Server

To enable the CA-ACF2 security interface, add the following logical symbol to
the ISVREDBC member in the EDBC.V2R3.FILES.IIPARM.

II_SECURITY = ACF2;

Testing the CA-ACF2
Interface

Use the following procedure to test the CA-ACF2 interface:

1. Start the EDBC server.

2. On the EDBC client, invoke the EDBC Network utility.

3. Right-click the newly created vnode and select SQL Test.

4. If the SQL test panel appears, the RACF interface has been successfully
installed.

Computer Associates Top Secret Security Facility
The server supports the Computer Associates Top Secret Security (CA-TSS). This
facility performs authentication checking and resource control for an OS/390
system. It ensures that a remote client is authenticated before a connection is
established. If the user ID/password fails, the remote connection request is
rejected. If the user ID/password is valid, then the connection processing
continues.

The interface to CA-TSS uses the IBM RACINIT to issue the logon validation
requests from the server to CA-TSS.

Installing and Customizing the CA-TSS Interface

To enable CA-TSS security, complete the following steps:

1. Create a CA-TSS Facility for the server.

2. Create a CA-TSS Access Control Identifer (ACID) for the server.

3. Create a CA-TSS ACID for each user.

4. Define the user to the server.

5. Create a vnode on the EDBC client.

6. Set the II_SECURITY logical symbol for the EDBC server.

7. Test the CA-TSS interface.

Creating a Server
CA-TSS Facility

A CA-TSS facility must be created to authorize the server to issue RACINT
requests.

Configuring the EDBC Server 6–15

Computer Associates Top Secret Security Facility

The following example shows the suggested control options for the server:
GATEWAY
INITPGM=IIG ID=D TYPE=31
ATTRIBUTES=ACTIVE,SHRPRF,NOASUBM,NOTENV,NOABEND,
ATTRIBUTES=MULTIUSER,NOXDEF,LUMSG,STMSG,SIGN(M),
ATTRIBUTES=NOPSEUDO,INSTDATA,NORNDPSW,AUTHINIT,
ATTRIBUTES=NOPROMPT,NOMENU,NOAUDIT,NORES,NOMRO,
ATTRIBUTES=WARNPW,NOTSOC,NOTRACE,NOLAB,NOEXTEND,
ATTRIBUTES=NODORMPW,NONPWR,NODATACOMXTND
MODE=FAIL
LOGGING=ACCESS,INIT,SMF,MSG
UIDACID=8 LOCKTIME=000 DEFACID=*NONE* KEY=8

Creating a Server
CA-TSS ACID

Create a CA-TSS identifier for the EDBC task. This Access Control Identifier
(ACID) should be associated with the OS/390 started task. In this example, the
ACID name is EDBCI1. The ACID must be able to access the server CA-TSS
facility and the CA-IDMS CA-TSS facility.

Creating a CA-TSS
ACID for Each User

Create a CA-TSS ACID for each usesr who will access the server. This ACID
should have the same characteristics as that of a TSO user.

The client must use TSO to set the correct password for this authorization ID.
The gateway does not support the setting of the CA-TSS password from a
gateway client.

Defining the User to
EDBC

The user created in the CA-TSS profile definition must be defined to the server.
See the “Maintaining the Gateway” chapter for instructions on adding new
users.

Creating a Vnode on
the Client

On the client use the EDBC Network utility to create a vnode entry.

See EDBC Getting Started for instructions on creating vnodes.

Setting the
II_SECURITY Logical
Symbol for the EDBC
Server

To enable the CA-TSS security interface, add the following logical symbol to
the ISVREDBC member in EDBC.V2R3.FILES.IIPARM.

II_SECURITY = TSS;

Testing the CA-TSS
Interface

Before you test the CA-TSS interface, you should have successfully completed
installing the gateway.

Use the following procedure to test the CA-TSS interface:

1. Start the EDBC server.

2. On the EDBC client, invoke the EDBC Network utility.

3. Right-click the newly created vnode and select SQL Test.

4. If the SQL test panel appears, the RACF interface has been successfully
installed.

6–16 Installation and Operations Guide

Force Inactivate Timeout

Force Inactivate Timeout
The force inactivate timeout facility cleans up threads that are hung as a result of
circumstances outside the control of the server. The facility frees up user threads
after a pre-specified period of time, following the failure of a disconnect or
inactivate. It cannot be invoked directly by the user, but must first be preceded
by the failure of a user disconnect, an operator inactivate, or an inactivate user
timeout.

To activate the force inactivate timeout facility, set the following symbol in
EDBC.V2R3.FILES.IIPARM(ISVREDBC).
II_FORCE_TMOUTINT = nn;

where nn is the number of minutes that elapses before a force inactivate is
executed against the thread that did not successfully inactivate or disconnect.
The default is five minutes.

If the parameter is not specified, or if it is set to 0, the inactivate user timeout
facility is not activated and therefore, no force inactivates occur. Error messages
normally accompany a force inactivate timeout.

Note: Do not confuse the force inactivate timeout logical with the
SRV_TMOUTINT or SRV_TMOUTINT or II_INACTV_TMOUTINT logicals.
SRV_TMOUTINT controls how often all of the timers (including the force
inactivate timer) are checked. II_INACTV_TMOUTINT controls the length of
time a user session can have no activity before it is automatically inactivated. For
more information on these logicals, see the “Server Logical Symbols and the
IIPARM Clist” appendix.

You may also set the II_FORCE_TMOUTINT symbol during stage2 of the IIVP.

Local Time Zone
The EDBC server logical II_TIMEZONE is used to specify the difference in hours
between Greenwich mean time (GMT) and the local time zone where the EDBC
server is running. Specify this logical in EDBC.V2R3.FILES.IIPARM(ISVREDBC)
as follows:
II_TIMEZONE = 'n';

where n specifies the local time zone displacement. If this parameter is not
specified, it defaults to 0.

Configuring the EDBC Server 6–17

Alternate Translation Tables

When the EDBC server is initialized, the value of the II_TIMEZONE logical is
compared to the system GMT time zone displacement. If you have defined the
logical to match the value of your local time zone, you will see the following
message at startup time:
EDBC: II_TIMEZONE set to n

If the value you set for II_TIMEZONE does not match the value of your local
time zone as set in SYS1.PARMLIB(CLOCKxx), you will see the following
message at startup time:
EDBC: II_TIMEZONE set to n
EDBC: II_TIMEZONE (n) does not match local timezone(n)
EDBC: II_TIMEZONE DATE conversion may be incorrect

If II_TIMEZONE is defined incorrectly on either the server or client installation,
dates will appear incorrect.

The gateway does not support the II_DATE_FORMAT logical; therefore, all date
input strings must be in US format. See the EDBC OpenSQLReference Guide for a
list of valid US date formats.

Year 2000 Support

The installation accommodates the year 2000 by allowing you to set the
II_DATE_CENTURY_BOUNDARY logical symbol. See the “Server Logical
Symbols and the IIPARM Clist” appendix for more information about this
logical symbol.

Alternate Translation Tables
The server can use alternate translation tables that allow the default table
(Country Extended Code Page 037 for the USA) to be overridden.

Note: This capability only applies to single byte character sets.

To override the default table, use the IIPARM logical,
II_GCC_TRANSLATE_TABLE, which specifies the name of the alternate
translation table to be used. For example:
II_GCC_TRANSLATE_TABLE = 'CECP277';

The above example would bring in the Denmark/Norway translate table. Some,
but not all, alternate translation tables are supplied with the server. Members
CECPnnn (where nnn is Extended Code Page number) are supplied in the
FILES.ASM library in source form and the compiled forms are in the
BACK.LOAD library.

6–18 Installation and Operations Guide

Alternate Translation Tables

A job (member CECPNNN in the SAMPLE.CNTL library) can be run, with
modifications, to compile an alternate translation table.

The translate table causes the server to change incoming (GCC Network
Standard single byte characters [ASCII with extensions]) characters into local
EBCDIC characters. (A reverse table is built for outgoing characters.)

To build a new table, start with the USA table CECP037 and make changes
where appropriate. The notes in the CECP037 table will assist you with the
needed changes. In summary, there are four types of changes:

1. Code Page Name—CECPnnn where nnn is the CECP identifier.

2. Tilde substitute value—the hex value of whateverserver value x'7E' is
translated to.

3. Dollar Sign substitute value—the hex value of whatever server value x'24' is
translated to.

4. Server substitute values (multiple)—in the CECP037 source, each server
value that translates into a non-zero value will indicate, in comments, what
the server value represents. All of these should be reviewed and changes
made as required.

When an OS/390 client connects to an EDBC server, the server must force the
client to translate its outgoing messages. This is accomplished by including
member FORCEHET in the IIPARM concatenation in the server JCL.

Configuring the EDBC Server 6–19

Chapter

7 Maintaining the Gateway

The gateway and the EDBC server run in a single address space. This address
space may require periodic maintenance. This chapter assumes that one person,
probably an OS/390 system programmer, is designated to act as the gateway
DBA.

This chapter describes how the gateway DBA carries out the tasks:

■ Managing CA-IDMS tables created or accessed through the gateway

■ Bringing up and shutting down the EDBC server

■ Carrying out a range of operations with the OS/390 modify command, such
as activating or inactivating a specified protocol server, or turning tracing on
or off for troubleshooting

■ Enabling a new user to access CA-IDMS databases through the gateway

■ Creating a second EDBC server on the same OS/390 host

Database Management Functions
The gateway interacts with CA-IDMS as a standard CA-IDMS application. All
CA-IDMS data accessed through the gateway remains completely under the
control of CA-IDMS and is governed by CA-IDMS rules. As with any other
CA-IDMS application, CA-IDMS determines data access permissions, optimum
data access path, and data integrity and recovery.

The DBA for each CA-IDMS Central Version should continue to create, destroy,
back up, and recover CA-IDMS data using the functions provided by CA-IDMS.
For further information on managing CA-IDMS Central Versions, consult your
CA-IDMS documentation.

Maintaining the Gateway 7–1

Starting and Stopping the EDBC Server

Starting and Stopping the EDBC Server
The procedures in the following sections start and stop the EDBC server.

Starting the EDBC Server as a Started Task

To start the EDBC server, enter the following OS/390 operator command:

S procname.identifier

For example:

S EDBCI1.EDBC

The following messages appear on the OS/390 console:
EDBC: EDBC MVS Server Default Version for CPU id xx-xxxxxx-xxxx
EDBC: Initializing Operator Interface Subtask
EDBC: Initializing Housekeeping Subtask
EDBC: Initializing communication queue servers
EDBC: Initializing communication drivers
EDBC: SNA_LU0 Protocol Server Initialization Begun
EDBC: SNA_LU0 Opened ACB IIS1GWS1
EDBC: SNA_LU0 Protocol Server Initialization Complete
EDBC: TCP_IBM Protocol Server Initialization Begun
EDBC: TCP_IBM Listening on Port 2610
EDBC: TCP_IBM Protocol Server Initialization Complete
EDBC: TCP_SNS protocol server Initialization Begun
EDBC: IDMS connection ACTivated
EDBC: EDBC Server Initialization Complete

Note: This example shows two of the protocol servers initializing. You may have
other protocol servers installed at your site.

After initialization is successfully completed, EDBC is ready to process requests.

Stopping the EDBC Server

Stopping the EDBC server will cause all active connections to be terminated.

To shut down EDBC, enter the following OS/390 operation command:

P identifier

For example, with the default installation value for the identifier, this command
is:

P EDBC

7–2 Installation and Operations Guide

The Gateway Hot Connect Function

After you issue this command, the following messages appear on the OS/390
console:
EDBC: EDBC Server shutdown in progress
EDBC: Wait for Operator Interface to end
EDBC: Operator Interface ended
EDBC: SNA_LU0 Protocol Server Termination Begun
EDBC: SNA_LU0 Protocol Server Termination Complete
EDBC: TCP_IBM Protocol Server Termination Begun
EDBC: TCP_IBM Protocol Server Termination Complete
EDBC: Housekeeping shutdown complete
EDBC: Terminating communication queue servers
EDBC: EDBC Server shutdown complete (rc=0)

Starting the EDBC Server as a Batch Job

To start up the EDBC server as a batch job, do the following:

1. Use either one of the following members from the SAMPLE.CNTL library to
start the EDBC server as a batch job:

– xxxxEDBC where xxxx is the OS/390 subsystem ID

– STARTyy where yy is the server installation ID

2. Submit the job for execution.

 The console displays the series of messages shown in the previous section,
terminating in the message:

 EDBC: EDBC server initialization complete

The Gateway Hot Connect Function
The gateway hot connect function opens a connection between a gateway and a
DBMS. It reduces the time it takes to connect to a DBMS.

The hot connect opens tables in the DBMS address space and keeps them open
for the life of the hot connection. Because these tables are already open, the path
lengths of subsequent connections are shortened and thus connect time is
reduced.

The hot connect task runs in the EDBC server address space and can be started
during server initialization or by an OS/390 operator command. Startup during
initialization is determined by the IDMS_HOT_CONNECT logical symbol of the
ISVR member of IIPARM. Operator commands to ACTivate and INACTivate the
hot connection task are described in the Maintaining the Gateway section.

Maintaining the Gateway 7–3

Maintaining the Gateway

Note: For CA-IDMS, the hot connect behavior differs depending on how the
gateway interfaces to the CA-IDMS CV. When the LU62 interface is used, the
behavior is as described above. With the cross memory interface, the hot connect
is used to start and stop EDBC cross memory services. No communications can
occur between the CA-IDMS gateway and a CA-IDMS CV until the cross
memory services are started on both the EDBC server and CA-IDMS CV.
CA-IDMS tasks EDBCSTRT and EDBCSTOP control the starting and stopping of
cross memory services for a CA-IDMS CV.

Maintaining the Gateway
You can use the OS/390 modify command to carry out a series of operations for
the gateway. From the OS/390 operator console you can:

■ Display active users and internal service tasks, with information about the
status of each thread

■ Activate a protocol server or gateway hot connection

■ Inactivate a protocol server, user ID, user context, or gateway hot connection

■ Set tracing to debug a protocol server

■ Turn off tracing

■ Dump the entire address space for troubleshooting

■ Get help for this utility

These commands are all variations of the following format:

F identifier, command

A blank or a comma is a valid delimiter. Extraneous blanks produce errors. The
uppercase characters in the commands listed in the following table denote the
acceptable abbreviations for the commands.

For example, to display a list of all active threads for the gateway, when the
subsystem ID is EDBC, the command is:

F EDBC,D A

7–4 Installation and Operations Guide

Maintaining the Gateway

The following table summarizes this range of commands and the purposes they
serve:

Command Purpose Parameters Options

ACTivate Activates a protocol server or LU62 PIPE and
makes it available to accept incoming
communications. Also can start a gateway
hot connection.

Example:
F EDBC,ACT,PROT=KNET

Example:
F EDBC,ACT,CONNECT=IDMS

PROT=

PIPE=

CONNECT=

CCI
SNA_LU0
SNA_LU62
TCP_KNET
TCP_IBM
TCP_SNS

IDMSLU62

IDMS

INACTivate Cancels the specified thread, which can be a
user ID, user context, protocol server, PIPE,
or gateway hot connection.

Example:
F EDBC,INACT,ID=ABC00
If a specified user ID is inactivated, the user
is gracefully shutdown, with an appropriate
screen prompt. All other users and tasks
remain active.

Example:
F EDBCINACT,CONTEXT=02d08c10
If a specified user context is inactivated, the
user with that unique identifier is gracefully
shut down. Other users with the same user
ID, but different contexts, remain active.

Example:
F EDBC,INACT,PROT=LU0
If one protocol server is shut down, all
threads associated with it are also shut down.
If another protocol server is installed, the
latter remains active, along with the entire
gateway.

Example:
F EDBC,INACT,CONNECT=IDMS
This terminates the hot connection to the
specified gateway. All other threads are
unaffected.

ID=

CONTEXT=

PROT=

PIPE=

CONNECT=

User ID

Context

CCI
SNA_LU0
SNA_LU62
TCP_KNET
TCP_IBM
TCP_SNS

IDMSLU62

IDMS

Maintaining the Gateway 7–5

Maintaining the Gateway

Command Purpose Parameters Options

TRace Turns on tracing to provide dynamic
information about the activity of the specified
protocol server or PIPE for debugging.

Example:
F EDBC,TR,PROT=LU0

Note: Do not turn on tracing except when
recommended by Computer Associates’
Technical Support.

PROT=

PIPE=

CCI
SNA_LU0
SNA_LU62
TCP_KNET
TCP_IBM
TCP_SNS

IDMSLU62

NOTRace Turns off tracing for the specified protocol
server or PIPE.

Example:
F EDBC,NOTR,PROT=KNET

PROT=

PIPE=

CCI
SNA_LU0
SNA_LU62
TCP_KNET
TCP_IBM
TCP_SNS

IDMSLU62

DUMP Dumps the entire address space for
troubleshooting purposes.

Example:
F EDBC,DUMP,ASID=14

Note: Give this command only when
recommended by Computer Associates’
Technical Support.

ASID= Numeric
identifier for
OS/390 address
space

HELP Provides a brief display of all the options of
the modify command for use by the OS/390
operator, with syntax and parameters.

Example:
F EDBC,HELP

None None

Display Active Provides information on all active threads in
the gateway address space.

Note: See the Display Active Command
section for more detailed information on this
command.

Example:
F EDBC, D A

None None

7–6 Installation and Operations Guide

Maintaining the Gateway

Display Active Command

Enter the following command to display the active threads on your subsystem:

F EDBC, D A

This command presents a display similar to the following example on your
screen:
IEDBC Display of Active Threads: 017
* Context Protocol Service User I/O# Inact Status *
|--|
| 05280010 Local Operator
| 05280410 Local Hkeeping
| 05280810 Local Namesvr
| 05280C10 Local EDBC
| 05281010 Local Hotmntr
| 05281410 HOTCONN IDMS
| 05281810 Local Monitor
| 05281C10 SNA_LU0 ProtSrvr
| 05282010 SNA_LU62 Protsrvr
| 05282410 TCP_IBM ProtSrvr
| 05282810 TCP_SNS Protsrvr
| 05282C10 CCI ProtSrvr
| 05283C10 IDMSLU62 Pipe 119450 0 *ACTive*
| 05283010 TCP_SNS IDMS usro01 43 0 130.119.5.7..1261
| 05283410 CCI Listener 0 11 *Listen*
| 05283810 TCP_SNS Listener 0 0 *Listen*
| Threads (Max=64, Curr=15, User=1)
+ Timeout (Inactv=120, Force=5)

The following table describes the fields in this display:

Field Description Predefined Value

Context Unique 8-character identifier used to identify a
gateway thread.

Since more than one user can share a user ID,
the context gives you a way to identify an
individual user.

Each internal thread in the gateway is assigned
a unique token. Use the token to cancel a thread
via the following operator command:

F EDBC,INACT,CONTEXT=

None

Maintaining the Gateway 7–7

Maintaining the Gateway

Field Description Predefined Value

Protocol Protocol associated with the thread. ■ Local - Internal Thread

■ CCI

■ SNA_LU0- SNA LU0 protocol

■ SNA_LU62 - SNA LU6.2
protocol

■ TCP_IBM - IBM TCP/IP
protocol

■ TCP_KNET - KNET TCP/IP
protocol

■ TCP_SNS - Interlink
SNS/TCP protocol

Service Descriptive name of each gateway thread. There
is one uuuuuu entry for each remote connection.

■ Operator - Operator thread

■ Hkeeping - Utility thread

■ Namesvr - Name server
thread

■ EDBC - Initialization thread

■ *Listen*- Listener thread

■ uuuuuu - Name of remote
user ID

■ IDMS LU62 –
CA-IDMS LU62 PIPE

■ HOTMNTR - Hot connection
monitor

■ HOTCONN - Gateway hot
connection

User Server class of a gateway thread. This field is
valid only for gateway threads.

■ CA-IDMS - CA-IDMS
gateway thread

I/O # Total number of sends and receives processed
by the gateway from the beginning of the
session. Shows the level of gateway activity.
This field is valid only for gateway threads. The
range of values is 0 to 9999999.

None

Inact Length of time, in minutes, since the last I/O.
This field can be used to determine which
threads are idle. Indicates how long a *Listen*
thread has been outstanding for the protocol
server.

None

7–8 Installation and Operations Guide

Adding a New Gateway User

Field Description Predefined Value

Status Provides current STATUS of the thread. ■ IP address and port number

■ *LISTEN*

■ TERM_PND

■ NO_PROT_SRVR

■ PCB_NOT_FOUND

■ CONN_IN_PROGRESS

Threads Provides summary information for the EDBC
server.

 Max= Maximum number of gateway threads
allowed.

 Curr= Number of active threads for this
gateway. This includes both internal and
gateway threads.

 User= Number of active gateway threads for
this gateway.

 Inactv= Inactivity timeout value. If this
parameter is set to a value > 0, then it indicates
the length of time a gateway thread is idle
before it is terminated by the gateway. If it is set
to 0, no timeout occurs.

Adding a New Gateway User
To enable a new user to access CA-IDMS data through the gateway, you must
perform the following steps:

1. Define an OS/390 user ID with authorized access to TSO.

2. Define the user to CA-IDMS and grant the necessary permissions for the
CA-IDMS Central Version.

 If the new user is a remote user, notify the EDBC system administrator on
the client with the name and password for the authorization ID. These
values must be entered in netu to give the user remote access to the gateway.

3. ADDIDMSU in SAMPLE.CNTL is a customized job to assist you in adding a
new user definition to the IIUSER table. Member ADDIDSMU contains this
job. You must edit the job to provide the appropriate column data for the
new user definition.

Maintaining the Gateway 7–9

Presenting Additional Gateway Objects to a User

See STEP050 of the S2 stage2 job for the column data for users that was
defined through the stage1 macros. You may also want to refer to the stage1
macros IGWFDBA and IGWFUSER for column descriptions.

4. If the user will be accessing the gateway via TSO, modify the user’s TSO
logon procedure to include the libraries that are needed to access the
gateway. (See the Customizing the TSO Logon Procedure section in the
“Installing the Gateway” chapter.)

Presenting Additional Gateway Objects to a User
By default, the list of objects (tables, views, and so on) presented to EDBC users
at connection time is limited to objects owned by:

■ The EDBC user (user_name and default_schema in the IIUSER table)

■ The user’s DBA (dba_name in the IIUSER table)

■ The system_owner specified at installation time (usually $EDBC)

Example1 IIUSER table entry for user EDBCUSR1:

user_name dba_name default_schema

EDBCUSR1 EDBCDBA1 EDBCUSR1

In this example, the list of objects presented to EDBCUSR1 at connection time
consists of objects owned by EDBCUSR1, EDBCDBA1, and the system_owner.

The IIGWSCHEMA_SPACE table is used to expand the default list of objects.
Each row in IIGWSCHEMA_SPACE consists of 2 columns, dba_name and
schema_name. If dba_name is set to PUBLIC, every EDBC user is additionally
presented with tables owned by schema_name. If dba_name is set to the name of
an EDBC DBA, every user in this DBA’s group is additionally presented with
tables owned by schema_name.

Example 2 The IIUSER entry for user EDBCUSR1 is the same as in Example 1 but the
following entries have been added to IIGWSCHEMA_SPACE:

dba_name schema_name

PUBLIC EDBCUSR2

PUBLIC EDBCUSR3

EDBCDBA1 EDBCUSR4

EDBCDBA1 EDBCUSR5

7–10 Installation and Operations Guide

Defining an Additional EDBC Server

In this example, EDBC presents EDBCUSR1 with additional objects owned by
EDBCUSR2 and EDBCUSR3 (because objects owned by these schemas have been
added to the PUBLIC group) and objects owned by EDBCUSR4 and EDBCUSR5
(because EDBCUSR1 belongs to the EDBCDBA1 group).

Note: Even though EDBC may present additional objects to a user at connection
time, the user needs to have appropriate GRANT privileges to gain access to
these objects.

Defining an Additional EDBC Server
There may be times when you need to create an additional EDBC server to
CA-IDMS on the same OS/390 host for load balancing or resource control. You
may also wish to create additional servers to access other CA-IDMS Central
Versions. The following procedure describes how to use the IIVP to define the
second EDBC server.

Using IIVP to Create a Second EDBC Server

Follow these steps to create a second EDBC server using the IIVP:

1. Define a second gateway subsystem name to OS/390.

 Each server must have a unique OS/390 subsystem defined.

2. Add this new subsystem name to the IEFSSNxx member in SYS1.PARMLIB.

 You must IPL OS/390 at the end of this procedure to activate this new
subsystem.

3. Define the network changes needed to access this second server.

– For SNA LU0 protocol server support:

 Define the VTAM APPL for this server. You can duplicate the existing
VTAM APPL and change the name.

– For TCP/IP protocol server support:

 Select the Port ID for this server. This Port ID must be different from the
original Port ID assigned to the first server.

– For CCI protocol server support:

 Select the CCI Product ID for this server. This value must be different
from the original Product ID assigned to the first server.

4. Edit the stage1 input file IGWFSTGS in the dataset with the default name
EDBC.V2R3.FILES.ASM.

Maintaining the Gateway 7–11

Defining an Additional EDBC Server

 Make the following changes to each SYSGEN statement:

■ IGWFJOB: It is recommended that you change the JOBNAME=
prefix so that the members that are placed into the
STAGE2.CNTL dataset have unique names and do not
replace previous members. Use the new installation ID
as part of the prefix.

■ IGWFIDMS: No changes required.

■ IGWFINET: Change the following parameters as indicated:

 SUBSYS=
Set this parameter to the value of the new gateway
subsystem name.

 ID=
Set this parameter to the value of the new
II_INSTALLATION value.

 MAXUSER=
Set this parameter to the maximum number of users to
be allowed on the system.

■ IGWFPSVR: Add a new IGWFPSVR statement corresponding to the
network protocol parameters that will be needed to
access the new server. Use the following guidelines for
each parameter:

 TYPE=
Set this to the type of protocol server that the new
gateway will use.

 ACB=
If the LU0 protocol server is being used, set this value
to the new VTAM APPL defined for this server.

 PLU=
If the KNET protocol server is being used, set this value
to that of the KNET primary Logical Unit value.

 PORT=
If the KNET protocol server is being used, set this value
to that of the new port ID associated with this server.

 INSTALL=
Set this value to that of the IGWFINET ID= value.

 APPLID=
If the Interlink SNS/TCP protocol server is being used,
set this value if access to the SNS/TCP subsystem is
restricted by the application id.

7–12 Installation and Operations Guide

Defining an Additional EDBC Server

 PASSWORD=
If the Interlink SNS/TCP protocol server is being used,
set this value if a password is required to interface to
the SNS/TCP subsystem.

 SYSID=
If the Interlink SNS/TCP protocol server is being used,
set this value if the subsystem name of the SNS/TCP
subsystem is different than the default of ACSS.

 PRODID=
If the CCI protocol server is being used, set this value to
that of the new CCI Product ID associated with this
server.

■ IGWFBLD: Make the following change to this SYSGEN statement:

 PRODUCTS=(EDBC)
This specifies that the IIVP stage1 is to create a
jobstream that defines a new server, but does not install
any new gateway system catalogs in CA-IDMS.

■ IGWFPIPE If the new server will interface to CA-IDMS using the
LU62 driver, add a IGWFPIPE statement.

5. Save the IGWFSTGS member in the dataset with the default name
EDBC.V2R3.FILES.ASM.

6. Edit the member IGWFSTGS in the dataset with the default name
EDBC.V2R3.SAMPLE.CNTL and submit it for execution.

 This job creates the IIVP stage2 jobstream in a dataset with the default name
EDBC.V2R3.STAGE2.CNTL.

7. Review the jobstream in this dataset and submit it for execution.

 The jobstream consists of the following jobs:

– IGWFVPA0: Creates logical symbols to customize the gateway

– IGWFVPI0: Customizes EDBC

– IGWFVPN0: Creates name server files

– IGWFVPP0: Customizes the CA-IDMS PIPE (LU62 interface only)

– IGWFVPS4: Installs CA-IDMS cross memory programs (if IGWFPIPE
 was not specified)

8. Release each job sequentially.

 These jobs define a second EDBC server to CA-IDMS. See the Final
Installation Procedures section in the “Installing the Gateway” chapter for
the post-installation steps that you must complete.

Maintaining the Gateway 7–13

Defining an Additional EDBC Server

Cloning an EDBC Server to a Different LPAR

The following procedure describes how to use the EDBC installation process to
clone an existing EDBC server installation to a different LPAR(s):

1. Define the required subsystem(s) on the target LPAR.

2. APF authorize the EDBC server load libraries.

3. Make a copy of the customized stage1 for the existing installation.

4. Change the following stage1 macros:

– IGWFJOB—Change the JOBNAME= parameter so that the members that
are placed into the STAGE2.CNTL dataset have unique names and do
not replace any existing members.

– IGWFINET—Change the ID= parameter to a new II_INSTALLATION
value.

– IGWFPSVR—Change the USERID= parameter to the value for TC/PIP
on the target LPAR.

5. Customize the appropriate DBMS macro(s) (that is, IGWFDB2, IGWFDCOM,
IDMS, and so on).

6. Submit the stage1 job.

7. Submit the generated stage2 jobs.

Except for the IINAME files, EDBC data sets from the original install are shared
across LPARs.

Connecting from One EDBC Server to Another

When you want to connect from one EDBC server to a second EDBC server, use
the procedure described in this section.

Once you have created an additional EDBC server, the additional server (EDC2)
must be defined to act as a client of the first server (EDBC). You must complete
the following procedure in order to allow a remote client connected to the
second EDBC server to connect to the first EDBC server.

1. Verify that both servers (EDBC and EDC2) have been started.

2. From ISPF option 6, issue the following command to set up the logical
symbols to access the second server (EDC2).

%iiparm isvr(edc2) prefix(edbc.v2r3)

 This TSO Clist allocates the IIPARM DD statement that contains the logical
symbols that allow the TSO address space to connect to the EDC2 server.

7–14 Installation and Operations Guide

Defining an Additional EDBC Server

3. Type the following to invoke the netu utility:

netu

 The netu utility is used to define the information required by an EDBC client
to connect to a remote EDBC node, in this instance, EDC2.

4. At the NETU prompt, type n to select Modify Node Entry and press Enter.

5. At the following prompt
Enter operation (add, del, show):

 type add and press Enter.

6. Type the following responses to the following prompts that appear:

Netu Prompt Response
Enter Private or Global (P): p

Enter the remote vnode name: EDBCUSER01

Enter the network software type: TCP_IBM

Enter the remote node address: Internet Address
Enter the remote server listen address port ID

7. When the following message appears:
 Private: 1 row(s) added to the Server Registry

 Type the following to return to the netu menu:

 /*

8. At the NETU prompt, type a to select Modify Remote Authorization Entry.
9. Type the following responses to the following prompts that appear:

Netu Prompt Response
Enter Private or Global (P): p

Enter the remote vnode name: EDBCUSER01

Enter the remote User Name: edcusr1

Enter the remote Password: xxxxxxx

Repeat the remote Password: xxxxxxx

10. When the following message appears:
 Private: 1 row(s) added to the Server Registry

 Type the following to return to the netu menu:

 /*

Maintaining the Gateway 7–15

Defining an Additional EDBC Server

11. Type e to exit from netu.

 When you successfully complete these steps, a vnode entry with a
corresponding remote user ID entry is defined to access the EDBC server,
EDBC.

 Verify that the remote user name is a valid CA-IDMS authorization ID and
the associated password is valid.

 For more information about netu, see the System Administrator’s Guide.

Verifying the Connection

To verify that you can connect to the first EDBC server (EDBC) from the second
server (EDC2), complete the following steps.

1. Verify that both servers are started.

2. Access EDC2 from ISPF option 6 from a TSO terminal.

 %iiparm isvr(edc2) pre(edbc.v2r3)

3. Issue the following command to invoke the Terminal Monitor, assuming the
CA-IDMS Central Version name is DSNT.

 sql edbcuser01::dsnt/idms

 The Terminal Monitor prompt should appear, indicating that you have
successfully connected to the first gateway.

The gateway catalog, iidbconstants, can be used to verify that the correct user ID
is being used to access the gateway. Issue the following command from the
Terminal Monitor:

select * from iidbconstants\g

Using the sample values, the following response should appear.

USER_NAM DBA_NAME SYSTEM_O

EDCUSR1 EDCUSR1 $EDBC

 (1 row)

The value in the USER_NAM column should match what was specified in the
remote user name definition.

7–16 Installation and Operations Guide

Chapter

8 Working with CA-IDMS Data

Your primary source of information about the EDBC user interfaces is EDBC
documentation for the appropriate platform. For detailed information about
CA-IDMS, see the CA-IDMS documentation.

This chapter does not summarize the information in these documentation sets.
Instead, it addresses the aspects of working with EDBC and CA-IDMS that are
particular to the gateway. This chapter:

■ Explains how to connect to CA-IDMS from an EDBC user interface

■ Describes how to create new CA-IDMS tables

■ Summarizes how to access existing tables in CA-IDMS

■ Shows the mapping between EDBC data types and CA-IDMS data types

The Database in EDBC and in CA-IDMS
An EDBC and a CA-IDMS relational database management system consist of one
or more databases. EDBC system catalogs cover a single database, but CA-IDMS
system catalogs can cover all databases in one Central Version (CV).

The system catalogs for the gateway can cover an entire CA-IDMS Central
Version.

The interaction between the IDMS gateway and CA-IDMS differs depending on
whether the gateway is running in the EDBC server address space or in a TSO or
batch address space. When running in the EDBC server address space, the
interaction is by means of a cross memory interface or an LU62 (APPC) API.

In the cross memory option, two programs, EDBCECOM and EDBCRSPD, are
installed in the IDMS Central Version. EDBCECOM acts as a "driver," which
enables the communication between the IDMS Central Version and the EDBC
server.

Working with CA-IDMS Data 8–1

The Database in EDBC and in CA-IDMS

The EDBCECOM program is initiated by the task code "EDBCssid," where "ssid"
is the subsystem ID of the EDBC server associated with a particular instance of
an EDBCECOM program. Thus, multiple EDBC servers can communicate with a
single IDMS Central Version. The "EDBCssid" driver is defined as an IDMS
startup Autotask which is managed by two additional programs, EDBCSTRT
and EDBCSTOP. Both EDBCSTRT and EDBCSTOP accept the subsystem ID as
an input parameter, that is, "EDBCSTRT ssid" and "EDBCSTOP ssid." These tasks
alternatively start and stop EDBCECOM in the IDMS address space. The
EDBCECOM program initiates an occurrence of the EDBCRSPD program for
each active IDMS gateway thread. The EDBCRSPD program accepts and
performs SQL queries and returns the results to the gateway thread, using
buffers in ECSA and cross memory WAIT/POST.

With the LU62 (APPC) API option, a single program, RHDCRSPD, is installed on
the IDMS Central Version. This program performs the same functions as
EDBCRSPD, but the interaction with the IDMS gateway uses the IDMS LU62
Line Driver interface. In addition to the RHDCRSPD program, a LINE, PTERMs
and LTERMs must be defined to the IDMS CV and ACBs and MODEENTs
defined to VTAM.

Cross memory is the recommended option when the EDBC server and IDMS CV
are operating in the same complex.

When the IDMS gateway runs in a TSO or batch address space, the Mini-CV
interface is used to interface the gateway to IDMS. The //SYSCTL DD statement
defines the IDMS CV the gateway will interact with.

Accessing a CA-IDMS
Central Version

To access a CA-IDMS Central Version through the gateway you must:

The following section describes how to access a CA-IDMS Central Version from
an EDBC client.

■ Know the name of the CA-IDMS secondary catalog to which a connection is
to be established.

 Note: A CA-IDMS secondary catalog is synonymous with database.

■ Have been defined to that CA-IDMS Central Version (CV).

■ Have access to a TSO account on the OS/390 system where the CA-IDMS
Central Version resides.

Connecting to CA-IDMS

This section explains how to connect to a CA-IDMS Central Version from an
EDBC client and locally from TSO.

8–2 Installation and Operations Guide

The Database in EDBC and in CA-IDMS

Connecting to
CA-IDMS Remotely
from an EDBC Client

The syntax for accessing a remote CA-IDMS Central Version is:

command vnode::dbname/ idms [with_clause]

The following table describes these parameters:

Parameter Syntax

command EDBC command to connect to a server

vnode:: The virtual node name of the remote node on which the
CA-IDMS Central Version is located (note the two colons).
The vnode name is defined on the system where the EDBC
interface resides, using the Netu utility.

dbname The name of the CA-IDMS secondary catalog to use for
the connection. To default to the secondary catalog that is
set for the server, specify IDMS.

idms The server class being accessed. The server class for the
gateway is IDMS.

with_clause The only supported with clause option is idms_ct_option.

Upper and lowercase entries are both acceptable.

For example, to access a CA-IDMS secondary dictionary named CA-IDMS on a
remote node with the vnode name london, type:
sql london::idms/idms

The with idms_ct_option clause allows you to append CA-IDMS-specific
parameters to all create table statements for a given connection. For example:
connect ... with idms_ct_option = 'in
 "default.areaname"'

The with idms_ct_option clause overrides the server logical that is set for
idms_ct_option. You can override this logical on a create table statement. For
more information, see the Creating Tables in a Non-Default Database Area
section in this chapter.

Connecting to
CA-IDMS Locally
from TSO

To access a CA-IDMS Central Version locally from TSO, using the EDBC
Terminal Monitor, type:

command dbname [with_clause]

where command is any system level command, and dbname is the name of the
CA-IDMS secondary dictionary.

Working with CA-IDMS Data 8–3

Creating Tables in CA-IDMS

For example, to use the Terminal Monitor to access a CA-IDMS secondary
dictionary named IDMS, on the same host computer (the IIPARM DD statement
points to the system logical symbols that control the connection), type:

sql idms

Connecting to
CA-IDMS from an
EDBC Application

You can access a CA-IDMS Central Version using an application coded in a
host language program that contains embedded SQL statements.

Every embedded OpenSQL application must include an explicit connect
statement to connect the program to the database. The connect statement must be
the first executable SQL statement in the program.

If the application program is accessing a remote CA-IDMS database, the connect
statement has the following syntax:

connect vnode::dbname [with_clause]

For example:
exec sql connect 'techs::idms';

If the application program is accessing a local CA-IDMS database (the IIPARM
DD statement points to the system logical symbols that control the connection),
the connect statement has the following syntax:

connect dbname [with_clause]

For example:
exec sql connect 'idms';

Accessing Multiple
CA-IDMS Central
Versions

The gateway can connect to multiple CA-IDMS Central Versions. See the
"Multiple Central Version Support" appendix for details on implementing
multiple CV support.

Creating Tables in CA-IDMS
This section describes important characteristics of CA-IDMS tables and how to
create tables in CA-IDMS.

8–4 Installation and Operations Guide

Creating Tables in CA-IDMS

Rules Governing CA-IDMS Tables

All tables in a CA-IDMS Central Version are governed by CA-IDMS rules and
requirements. This is true whether the tables are created by an EDBC user
through the gateway or by a CA-IDMS user with a standard CA-IDMS
application.

In CA-IDMS, the schema owner is the owner of a table or view. Only the owner
is allowed access to tables or views. The schema owner can grant other users
permission to access owned table or views.

In CA-IDMS, whenever you create a table, it is automatically placed in the
default area specified for the SCHEMA, unless you specify otherwise. You can
override the default area using an OpenSQL with clause. For more information,
see the Creating Tables in a Non-Default Database Area section in the “Working
with CA-IDMS Data” chapter.

Case Sensitivity Gateway users should be aware that database objects such as tables, views, and
owner names are stored in the CA-IDMS catalogs in upper case. Therefore,
these objects appear in upper case when they are viewed in the standard
catalogs.

Creating Tables in CA-IDMS Through the Gateway

You can create a table in CA-IDMS through the gateway by:

■ Entering the Terminal Monitor and invoking the OpenSQL create table or
create table as select statement from the command line

■ Incorporating the OpenSQL create table or create table as select statement
into a custom application created with:

– ODBC application

– ADO or OLEDB application

■ Using the OpenSQL direct execute immediate statement with the CA-IDMS
create table statement, either from the Terminal Monitor or from an ESQL
application program

Whenever you create a table through the gateway, you should issue a commit
statement directly afterward. CA-IDMS places locks on resources like the system
catalogs whenever you create or drop a table. When you issue a commit
statement, CA-IDMS releases those locks, freeing system resources for others’
use.

Working with CA-IDMS Data 8–5

Creating Tables in CA-IDMS

Creating Tables in a
Non-Default
Database Area

When you create a CA-IDMS table through the gateway, the table is
automatically placed in a default database area. The default name for this
database area is EDBCDBA.II-DDATA-AREA, but a different value may have
been assigned during the installation process.

To improve the way your applications run against CA-IDMS, you may want to
create tables in other database areas. There are three ways to designate the
database area name in which a table will be created. You can:

■ Define a server logical. This specifies the default database area name for
every create table statement for every user connection with this EDBC server.
For more information, see the Using Server Logicals section in the “Working
with CA-IDMS Data” chapter.

■ Specify a new default database area name in which you place all newly
created tables. The new default database area name must already have been
created. To substitute the new default for the original default, supply the
following parameter on the with clause of the connect statement:

 connect ... with idms_ct_option = 'in databasesegment.areaname'

 This overrides the installation-defined default database area name for the
duration of the connection, and creates all tables in the newly specified
database area name.

■ Specify the database area name of your choice by adding an SQL with clause
to the create table statement. For example,

 create table tablename ... with idms_option = 'in
 databasesegment.areaname'

 This overrides any default database area name that was defined either with
the connect statement or at installation.

Using Server Logicals The IDMS_CT_OPTION logical allows you to append IDMS-specific
parameters to the create table statement. The supported forms of this logical
are:

IDMS_CT_OPTION = 'CA-IDMS create table parameter'
IDMS_CT_OPTION1 = 'CA-IDMS create table parameter'
IDMS_CT_OPTION2 = 'CA-IDMS create table parameter'
IDMS_CT_OPTION3 = 'CA-IDMS create tableparameter'
IDMS_CT_OPTION4 = 'CA-IDMS create table parameter'
IDMS_CT_OPTION5 = 'CA-IDMS create table parameter'

IDMS_CI_OPTION = 'CA-IDMS create index parameter'
IDMS_CI_OPTION1 = 'CA-IDMS create index parameter'
IDMS_CI_OPTION2 = 'CA-IDMS create index parameter'
IDMS_CI_OPTION3 = 'CA-IDMS create index parameter'
IDMS_CI_OPTION4 = 'CA-IDMS create index parameter'
IDMS_CI_OPTION5 = 'CA-IDMS create index parameter'

8–6 Installation and Operations Guide

Table Names in CA-IDMS and EDBC

Table Names in CA-IDMS and EDBC
CA-IDMS stores database objects in upper case in its system catalogs. As a result,
the names of CA-IDMS tables, views, and indexes are in upper case when
accessed from an EDBC user interface.

CA-IDMS creates two-part table names. It automatically joins the name of the
current schema to the name of the table to create a table name in the format
schema.tablename.

If you do not qualify a table reference, CA-IDMS will qualify it using the default
schema contained in the IIUSER table.

The default schema for a user is set by the IGWFUSER stage1 parameter.

Table Creation by the Gateway DBA

The gateway DBA can create new CA-IDMS tables for you that you can access
through the gateway. These tables can be defined using a variety of CA-IDMS
tools. Once the table is created, the gateway DBA must grant you the necessary
access privileges for the table.

Accessing Existing Tables and Views in CA-IDMS
To access an existing table or view in CA-IDMS you must be authorized to
connect to the appropriate dictionary. In addition,

■ The table or view must be defined as public, or

■ You must own the table or view yourself, or

■ You must have been granted access privilege(s) to the table or view by the
object owner

To use an EDBC application to access an existing table you do not own, you
must specify the fully qualified table name, Schema.tablename.

Working with CA-IDMS Data 8–7

Access to CA-IDMS Network Definitions and Data

Table Access Privileges

As described in the Accessing Existing Tables and Views in CA-IDMS section,
any user who owns a table or view in CA-IDMS can grant other users permission
to access those database objects. CA-IDMS recognizes the following access
privileges:

■ select: to read from a table or view

■ insert: to add new rows to a table or view

■ delete: to delete rows from a table or view

■ update: to change existing data in a table or view

See the CA-IDMS SQL Reference Guide for information about definition
privileges.

Access to CA-IDMS Network Definitions and Data
EDBC access to IDMS Network data is initiated by defining an SQL schema with
the CREATE SCHEMA FOR NONSQL SCHEMA statement.

The records defined in the non-SQL schema can be accessed as tables in SQL
DML and CREATE VIEW statements. Each record element is represented as a
column except as noted in Record Structure Considerations section in the IDMS
SQL Reference Guide.

The syntax for create schema is as follows:

create schema schema_name
 default area segment_name.area_name
 for nonsql schema nonsql_schema_specification

(Expansion of nonsql_schema_specification)

dictionary-name.nonsql-schema_name version version number
dbname database_name

The dictionary-name names the dictionary that contains the non-SQL-defined
schema. If dictionary-name is not specified, the default is the dictionary to
which the SQL session is connected.

8–8 Installation and Operations Guide

Access to CA-IDMS Network Definitions and Data

The database-name identifies the database containing the data described by the
non-SQL-defined schema. Database-name must be either a segment name or a
database name that is defined in the database name table. If database-name is
not specified, no database name is included in the definition of schema-name. At
runtime, the database to which the SQL session is connected must include
segments containing the areas defined by the non-SQL-defined schema.

There are two aspects to the EDBC server accessing IDMS Network data
definitions and data:

1. To view the IDMS Network data definitions, the EDBC server must be
connected to a database name that includes the SQL segments containing the
SQL schema as well as the segments containing the dictionary that contains
the non-SQL schema.

2. To access the IDMS Network data, the EDBC server must be connected to a
database name that includes the segments containing the application data
areas defined by the Network schema.

A typical IDMS Central Version will contain one or more SQL catalogs
(DDLCAT, DDLCATX, and DDLCATLOD areas) and one or more Dictionaries
(DDLDML, DDLDCLOD, etc. areas). By default, an IDMS Central Version
installation will include a SYSTEM database name that includes the system
Dictionary(SYSTEM) and a SYSDICT database name that includes the primary
Catalog(SYSSQL).

By default, the EDBC server installation procedure creates a secondary Catalog
(EDCSQL) and creates a database name that includes the EDCSQL catalog and
the IDMS SYSTEM dictionary. The EDCSQL catalog contains all of the metadata
necessary to support all client access through the EDBC server.

The default EDBC server installation therefore provides no access to user-
defined SQL schemas or Network schemas defined in a dictionary other than the
SYSTEM dictionary.

Most IDMS installations keep their Network schema definitions in a secondary
dictionary (not SYSTEM). The EDBC server does not require the IDMS system
dictionary, so the simplest way to view Network data through the EDBC server
is to modify the default EDBC server database name to include the EDCSQL
catalog and the appropriate secondary dictionary. SQL schemas can be created in
the EDCSQL catalog that "map" to the Network schema names.

If the installation has an SQL catalog already containing SQL schemas that map
the IDMS Network schemas, the existing SQL catalog can be used in place of the
default EDCSQL catalog. Please note that installation job IGWFVPS2 contains the
metadata required by the EDBC server. This job step must be executed against
every secondary SQL catalog that is to be used by the EDBC server.

Working with CA-IDMS Data 8–9

Dropping Tables Through the Gateway

In summary, to successfully access both the data definitions and the data, the
values specified for dictionary and dbname in the SQL schema created to access
nonSQL IDMS data are critical. The nonSQL schema must be qualified by using
the runtime database name as the dictionary in which this non-SQL schema is
found.

At runtime, when data access or data definitions are desired, a session must
explicitly connect to a database name in the CA-IDMS database name table. This
database name must include both the dictionary segment containing the
Network schema definition and the segments(s) where the data is actually
stored. Lastly, the nonSQL schema must use this same database name as the
'dictionary' name qualifying the nonSQL schema name.

Dropping Tables Through the Gateway
You can use the SQL drop table statement to remove an individual table from a
CA-IDMS Central Version. You can drop a CA-IDMS table only if you own the
table.

Similar to creating a table, CA-IDMS places locks on resources such as the
system catalogs whenever you drop a table. Issue a commit just after dropping
the table to release the locks and free system resources for other users.

You must also include the cascade parameter in order to remove views of the
table and any referential constraints. You can use either one of the following
options with cascade:

■ Use the SQL direct execute immediate statement with the CA-IDMS drop
table statement as follows:
direct execute immediate drop table abc cascade;

■ Use the with option:
drop table abc with idms_option = 'cascade'

SQL and the Gateway
SQL statements and commands are supported by the operating system on which
the EDBC user is running. When you work with a foreign database through a
gateway, you must code your applications using OpenSQL.

OpenSQL maximizes application portability. If you code an application to
OpenSQL specifications, you can run it against:

■ Ingres databases

8–10 Installation and Operations Guide

OpenSQL

■ Gateways, such as the Oracle gateway

OpenSQL
For portability across database management systems, the gateway supports most
OpenSQL statements. This section summarizes the OpenSQL statements that
you can use in applications that are running against the gateway. For further
information on the syntax and usage of the OpenSQL statements, see the
OpenSQLReference Guide for your platform:

The following table describes the extensions to OpenSQL that are supported by
the gateway:

OpenSQL Statement Restrictions

close None

commit None

connect The following option is not supported:

identified by username

create index None

create table None

create view None

delete None

describe None

disconnect None

drop index Must be used with the OpenSQL statement,
direct execute immediate

drop table None

drop view None

execute None

execute immediate None

fetch None

open The gateway ignores the following option in the
statement’s syntax and sets a warning flag:

open for read only

Working with CA-IDMS Data 8–11

Extensions to OpenSQL

OpenSQL Statement Restrictions

prepare None

rollback None

select None

set The gateway supports the autocommit option of
this statement

update None

Extensions to OpenSQL
The gateway supports two major extensions to OpenSQL: The with clause and
the direct execute immediate statement. These extensions, which are described in
the following sections, allow you to pass through parameters and statements that
OpenSQL does not recognize.

Using these extensions to OpenSQL can increase the capabilities of your
application or enhance its performance, as described in the following sections.
However, it affects portability. Including CA-IDMS-specific syntax in your
application limits its utility to CA-IDMS databases, because the application can
no longer run against an EDBC database or a different gateway.

The With Clause

The with clause enables you to specify CA-IDMS-specific options in an OpenSQL
statement. The gateway supports the with clause with the following OpenSQL
statements:

■ connect

■ create index

■ create table

■ create view

■ drop table

■ drop view

Valid with clause options depend upon the particular OpenSQL statement, as
described in the following table:

8–12 Installation and Operations Guide

Extensions to OpenSQL

With Clause Option OpenSQL
Statement

Description

check option create view Places restrictions on updating or
inserting into a view. See the
OpenSQLReference Guide for more
information.

idms_ct_option connect Allows you to specify one or more
CA-IDMS-specific parameters to
append to all subsequent create
table statements in a given
connection.

idms_option create index

create table

create view

drop table

drop view

Allows you to specify CA-IDMS-
specific parameters.

You can issue this statement
multiple times to specify multiple
parameters.

For example, to connect to a CA-IDMS Central Version IDMS, setting the default
area for table creation to EDBCDBA.II-DDATA-AREA, type:
connect 'mvs1::IDMS/IDMS' with idms_ct_option =
 'in EDBCDBA.II-DDATA-AREA'

For more information, see the Connecting to CA-IDMS Remotely from an EDBC
User Interface and Creating Tables in a Non-Default Database Area sections of
the “Working with CA-IDMS Data” chapter.

The Direct Execute Immediate Statement

The direct execute immediate statement allows you to append a CA-IDMS
statement to the OpenSQL direct execute immediate statement. The gateway
passes the statement on to CA-IDMS without processing it.

Note the following considerations:

■ A direct execute immediate statement can return a status message or
completion code, but cannot return data to the calling program.

■ The gateway does no syntax checking or verification of direct execute
immediate statements. The CA-IDMS statement is passed as a character
string for processing by CA-IDMS.

For more information on the direct execute immediate statement, see the
OpenSQLReference Guide, and the Gateway Query Handling and Syntax Errors
sections of the “Optimizing and Troubleshooting” chapter.

Working with CA-IDMS Data 8–13

Data Types and Utilities

Data Types and Utilities
The following topics are covered because the information differs from or extends
the conventions outlined in the OpenSQLReference Guide:

■ Date support

■ CA-IDMS time and date values, and their mapping to OpenSQL data types

■ Other data types and their mapping to CA-IDMS data types

Date Support

The gateway supports the OpenSQL date data type. This data type is mapped to
the CA-IDMS timestamp data type and vice versa.

Date values are stored in Greenwich Mean Time (GMT) and are converted to
local time using the II_TIMEZONE logical. For more information, see the Local
Time Zone section of the “Configuring Net” chapter.

Date values can contain any valid date between January 1, 1582, and December
31, 2382.

CA-IDMS Date and Time Values

The gateway does not support the CA-IDMS data types of date and time. When
you input date or time values from an EDBC user interface to CA-IDMS, the
values are passed directly to CA-IDMS without translation. You must be certain,
therefore, that the character string you enter for a CA-IDMS date or time value
has the correct format for that CA-IDMS data type.

It is recommended that you restrict your use of CA-IDMS date and time data
types to display only. The way the gateway handles this data may change, and
the usage may not be strictly upwardly compatible. If you confine this data to
display only, you minimize the effect potential changes may have on your
applications.

Note the following considerations:

■ Date and time data from CA-IDMS tables are returned as character data and
are translated into strings of 10 and 8 characters, respectively.

■ You can supply new values or update existing values if the character string
you enter for the date or time value has the correct format for that CA-IDMS
data type.

■ Updates are not successful unless the new string value represents a valid
date or time value.

8–14 Installation and Operations Guide

Data Types and Utilities

■ In the following respects, this CA-IDMS data does not behave like standard
character data:

– If the column is used in a where clause, the comparison is done on date
values, not on character string values.

– If the column is used in an order by clause, the rows are sorted in time
order rather than with the normal character string collating sequence.

Data Types

For portability across database management systems, the gateway supports the
following OpenSQL data types:

■ Character data: char and varchar

■ Numeric data: smallint, integer, and float

■ Date data: date

The gateway does not support data types such as integer1 and money.

Data Type
Conversion

The gateway is responsible for all data type conversions necessary for access to
CA-IDMS data and performs the following types of conversions:

■ When you retrieve data from a CA-IDMS Central Version, the gateway
converts it to an OpenSQL data type. This allows the EDBC user interface to
interpret the data properly.

■ When you create new data or update existing data, the gateway converts the
input from the EDBC user interface into the corresponding CA-IDMS data
type.

If there is no compatible data type, the query is rejected. If the new data type is
not completely equivalent to the original, data type conversion may result in loss
of precision or range.

CA-IDMS to OpenSQL
Data Type Mapping

The following table lists the CA-IDMS data types that the gateway supports,
and the OpenSQL data types to which they are converted. The table also
indicates any restrictions on range or precision that the conversion imposes:

CA-IDMS Data Type Open SQL Data Type Restrictions

binary Char

char Char Maximum length in
OpenSQL 2000

varchar Varchar Maximum length in
OpenSQL 2000

Working with CA-IDMS Data 8–15

Data Types and Utilities

CA-IDMS Data Type Open SQL Data Type Restrictions

date char Length 10

Decimal* float(8)

Double precision float(8)

Float
(single precision)

float(4)

Float
(double precision)

float(8)

Graphic Not supported

Vargraphic Not supported

integer integer

long integer float(8)

numeric float(8)

smallint smallint

real float(4)

time char Length 8

Timestamp date Length 26

Unsigned numeric Supported

Unsigned decimal Supported

* Note: CA-IDMS permits you to define decimal data in CA-IDMS tables. When
a query to CA-IDMS returns decimal data, the CA-IDMS gateway maps this
value into float or float8 columns. Thus, when viewed from an EDBC user
interface, columns defined as decimal values in CA-IDMS appear as float
columns instead.Decimal data can be returned as char if desired. See the
IDMS_DECIMAL_AS_CHAR system logical in the “Gateway Logical Symbols
and the IIPARM Clist” appendix.

8–16 Installation and Operations Guide

Using the EDBC Terminal Monitor

OpenSQL to
CA-IDMS Data Type
Mapping

The following table lists the OpenSQL data types and the CA-IDMS data types
to which they are converted, with relevant restrictions on range or precision:

OpenSQL Data Type CA-IDMS Data Type Restrictions

char Char Maximum length in
OpenSQL of 2000

varchar Varchar Maximum length in
OpenSQL of 2000

smallint Smallint -32,768 to +32,767

integer integer -2,147,483,648 to
+2,147,483,647

float float
(double precision)

None

date timestamp None

time Not supported

Using the EDBC Terminal Monitor
When you run the EDBC Terminal Monitor against the gateway, it is
recommended that you do so in autocommit on mode. This causes the gateway
to treat each statement as a transaction, and to issue an implicit commit after
each statement.

This is desirable because when a statement such as create or drop is issued to the
gateway, locks are granted in CA-IDMS. These locks are held until you issue a
commit or a rollback. The set autocommit on statement causes an implicit
commit to occur after each query, thus releasing any locked resources. So,
running the Terminal Monitor in autocommit on mode improves concurrency
and prevents timeouts from CA-IDMS.

The default setting for the Terminal Monitor is autocommit off. You can change
this setting in either of the following ways:

■ Interactively, each time you enter the EDBC Terminal Monitor (SQL).

■ By setting the gateway logical ING_SET to set autocommit on.

 This changes the default setting. You set the logical ING_SET where you
invoke the Terminal Monitor, not on the system where the gateway is
running.

Working with CA-IDMS Data 8–17

Chapter

9 Using Database Procedures

The CA-IDMS gateway supports database procedures that allow remote users to
invoke user-written procedures on the host operating system.

This chapter addresses the aspects of working with database procedures that are
particular to the CA-IDMS gateway. This chapter:

■ Summarizes the input parameters provided to database procedures

■ Outlines the coding conventions for database procedures

■ Describes input parameters

■ Describes non-function call macros

■ Describes the database procedure function call macros

■ Outlines data handling

■ Explains how to register, execute, and remove database procedures

■ Discusses the verification process for database procedures

■ Discusses how to use EXCI

Database Procedures Defined
Database procedures are application programs that can be invoked through the
CA-IDMS gateway. These programs must be written in Assembler.

Database procedures allow access to CICS transactions using the EXCI interface.

Select Procedures and Message Procedures

Database procedures operate in one of the two following modes:

■ Select mode which allows a client to receive formatted data (rows) as output
from the procedure.

■ Message mode which only allows unformatted data (messages) to be sent to
the client.

Using Database Procedures 9–1

Coding Database Procedures

Select mode operation requires that you:

■ Register the procedure as a SELECT_PROCEDURE or FUNCTION.

■ Define output fields using SELECT_OUT or OUTPUT to get an output
SQLDA built automatically, or the procedure can set up its own output
SQLDA.

■ Execute the procedure to get the input and output SQLDAs set up with
client supplied input data or defaults.

■ Select the procedure to actually invoke the user procedure code.

Message mode operation requires that you:

■ Register the procedure.

■ Execute the procedure.

Coding Database Procedures
The following sections describe coding database procedures. CA-IDMS database
procedures must be written in IBM assembler language. The programs are
required to be re-entrant and to run in address mode 31.

Coding Conventions

The interface program (SASMINT) is coded using IBM Standard Assembler
conventions.

The SASMxxxx members in the &prefix.SAMPLE.ASM library should be used as
a starting point for new routines.

The general order of using the supplied DBPxxxxx macros should be:

■ DBPPROLG should be the first statement in order to copy in and have the
function call macros defined inline to the program.

■ Save area handling and input parameter USINGs would be next.

■ A mainline routine that invokes processing subroutines is next.

■ On return, the RETVALUE field being non-zero will cause a message to be
sent back to the user. A 1 or 2 will cause any message put into the TEXT field
to be sent out to the user. Any other non-zero value will cause a message of
‘RAISE ERROR 999’ to be sent out.

■ Any constants could be placed here.

9–2 Installation and Operations Guide

Coding Database Procedures

■ Processing subroutines could be placed here. These would use whatever
function call macros that are needed, for example, ALLOC_MEMORY,
FREE_MEMORY, GET/PUT_VARIABLE, CALL_EXCI,
SEND_DESCRIPTOR, SEND_DATA for rows and SEND_DATA for ‘all
rows sent’. Each subroutine could be covered by a secondary base register if
needed.

■ Then DBPWORKI would be used to define the dynamic area required for a
save area, parm pointer and call area. Any user required items (up to a 4096
byte overall limit) could be added also.

■ The DBREGS macro could come here or after the DBPPROLG macro.

■ The DBPEPILI macro would define the required DSECTs for the input
parameters, the function list and the SQLDA structures.

■ END of program.

Library Considerations

The database procedure must be re-entrant, address mode 31 and linked into the
//IIUSRLIB DD file. The supplied data set is &prefix.USER.LOAD. This library
is not required to be APF authorized.

Procedure Completion

You can set the return_value and return_text parameters to return to the client if
an error occurs. Return_text must be followed by a null byte.

When your procedure completes, it must return one of the following codes to the
CA-IDMS gateway:

■ 0 if the procedure completed successfully

■ 1 is undefined for CA-IDMS

■ 2 if a procedure error occurred

Note: Return_text will be set in the alloc_memory, get_variable, put_variable,
and the send_data routines if there is an error.

The return_text is sent back to the client if the return code is 1 or 2. A return code
that is not 0, 1, or 2 produces a RAISE ERROR 999 message.

Using Database Procedures 9–3

Input Parameters

Input Parameters
The DBPEPILI macro defines DSECTs that are used to map out all of the
parameters that are passed to the Database Procedure.

PARMLIST is the base DSECT. It consists of pointers to:

 ISQLDA DS AL4 The Input SQLDA
 OSQLDA DS AL4 The Output SQLDA
 OSQLCA DS AL4 The SQLCA work area
 RETVALUE DS AL4 The return value (completion code) area
 TEXT DS AL4 The completion message area
 DBFUNC DS AL4 The function list
 TOKEN DS AL4 A token to passed to the interface
 routine when called by one of the
 support functions.
 SAVEWRK DS AL4 A 4096 byte save/work area for the
 procedure.

DBFUNC points to a list of callable support routine addresses and is covered by
the FUNCLIST DSECT.

 ENDTX Use the END_TRANSACTION macro to invoke this
 routine.
 ALLOCMEM Use the ALLOC_MEMORY macro to invoke this
routine.
 FREEMEM Use the FREE_MEMORY macro to invoke this routine.
 SENDMSG Use the SEND_MESSAGE macro to invoke this routine.
 CALLEXCI Use the CALL_EXCI macro to invoke this routine.
 SENDDESC Use the SEND_DESCRIPTOR macro to invoke this
 routine.
 SENDDATA Use the SEND_DATA macro to invoke this routine.
 PRCTRACE Use the PROC_TRACE macro to invoke this routine.
 GETVAR Use the GET_VARIABLE macro to invoke this routine.
 PUTVAR Use the PUT_VARIABLE macro to invoke this routine.

ISQLDA points to the Input SQLDA and is covered by the INSQLDA DSECT.

This SQLDA structure contains an entry for each registered variable in the order
they were registered. Another DSECT (INSQLVARN), can be used to cover the
metadata structure for each variable. INSQLDATAV can be used to cover the
input DATAVARN structure.

OSQLDA points to the Output SQLDA and is covered by the OUTSQLDA
DSECT.

9–4 Installation and Operations Guide

Assembler Macros

This SQLDA structure contains an entry for each variable that was registered as
an OUTPUT variable. Another DSECT (OUTSQLVARN), can be used to cover
the metadata structure for each variable. OUTSQLDATAV can be used to cover
the output DATAVARN structure.

This SQLDA is the one that is used to send rows (tuples) back to the client. The
first thing sent to the client must be a tuple descriptor. This is done via the
SEND_DESCRIPTOR macro. Then as many SEND_DATAs can be done as
needed to send data rows to the client. This must be followed by a special
version of the SEND_DATA that indicates ‘all rows sent’.

Assembler Macros
There are a number of members that are supplied in the FILES.MACLIB library
to support writing Database Procedures. The following list introduces the
members. An expanded explanation follows where needed:

DBPALLOC Contains the ALLOC_MEMORY macro.
DBPCALL Internal program call macro.
DBPCEXCI Contains the CALL_EXCI macro.
DBPC2HEX Contains the CONVERT_TO_HEX macro.
DBPDFMSG Contains the DEFINE_MESSAGE macro.
DBPENDTX Contains the END_TRANSACTION macro.
DBPEPILI Defines PARMs, FUNCTIONs and SQLDAs
DBPEXCI Defines the EXCI control structure.
DBPFREEM Contains the FREE_MEMORY macro.
DBPGTVAR Contains the various get data macros.
DBPPROLG Macro to copy in others and set the CSECT name.
DBPPRTRC Contains the PROC_TRACE macro.
DBPREGS Defines register equates.
DBPSNDAT Contains the SEND_DATA macro.
DBPSNDES Contains the SEND_DESCRIPTOR macro.
DBPSNDMS Contains the SEND_MESSAGE macro.
DBPSQLDI Defines SQLDA structures
DBPUTVAR Contains the various put data macros.
DBPWORKI Defines the save area, parm pointer and call areas.

Generated Error Messages

If there is an error during the execution of ALLOC_MEMORY, GET_VARIABLE,
PUT_VARIABLE or SEND_DATA, a message is put into the TEXT parameter
area that explains what happened. A return code of 1 or 2 will cause this
message to be sent back to the client. A PROC_TRACE macro could be used to
send it to the IIGWTR trace file.

Using Database Procedures 9–5

Non-Function Call Macros

Other Notes

When invoking the interface programs, each of the macros supplies a TOKEN as
the last parameter. This is done automatically. The TOKEN is an input
parameter.

No data conversions are done during any of the GET/PUT variable processes.
The data must be in the appropriate format.

Non-Function Call Macros
The following macros are required but do not perform any function calls:

DBPPROLG

This macro is used to start off a Database procedure. It will copy in other library
members to define the function macros inline with an optional listing. The label
on this macro will become the CSECT name for the module. A TITLE will be
generated.

name name: symbol. The name must begin in column 1.

b One or more blanks.

DBPPROLG

b One or more blanks.

__

title title: literal. The TITLE for the program.

 , LIST=list list: YES or NO (default)

name
 This is a required label to give the programs CSECT name.

title
 A literal in single quotes that will be the TITLE for the program.

9–6 Installation and Operations Guide

Non-Function Call Macros

,LIST=
 Specifies if the copied macros should be produced in the program
listing.
 NO is the default.

Example:

DBPROC DBPPROLG ‘Title for the program’,LIST=YES

DPBREGS

This macro is used to define equates for the registers.

b One or more blanks

DBPREGS

b One or more blanks.

Example:

 DBPREGS

DBPWORKI

This macro defines the dynamic work area for the program. A 4096 byte area is
passed to the program that can be used as the dynamic area.

The items defined in this area are an 18-word save area, a word to save the input
parms pointer, and an 8-word function call area. User items may be placed
immediately following the macro to have them included in the dynamic area. A
DSECT with a label of WORK is generated.

b One or more blanks

DBPWORKI

b One or more blanks.

Example:

 DBPWORKI

Using Database Procedures 9–7

Non-Function Call Macros

DBPSQLDI

This macro generates the DSECTs for the SQLDA structure.

SQLDA covers the base section.

SQLVARN covers the SQL variable metadata information.

DATAVARN covers the data/null indicator pointer structure.

b One or more blanks.

DBPSQLDA

b One or more blanks.

Example:

 DBPSQLDA

DBPEXCI

This macro defines the structures needed to access CICS through the EXCI
interface.

b One or more blanks.

DBPEXCI

b One or more blanks.

Example:

 DBPEXCI

DBPEPILI

This macro is used to define the DSECTs that cover the input structures. The
function macros will use these DSECTs in their generated statements. The
following DSECTs are generated:

9–8 Installation and Operations Guide

Function Call Macros

DSECT Name Description

PARMLIST Covers the input parameter list

FUNCLIST Covers the function list pointed to by the input
parm DBFUNC.

INSQLDA Covers the Input SQLDA pointed to by the input
parm ISQLDA.

INSQLDATAV Covers the DATAVARN section of the input
SQLDA.

INSQLVARN Covers the SQLVARN section of the Input
SQLDA

OUTSQLDA Covers the output SQLDA pointed to by the input
parm OSQLDA.

OUTSQLDATAV Covers the DATAVARN section of the output
SQLDA.

OUTSQLVARN Covers the SQLVARN section of the output
SQLDA.

b One or more blanks.

DBPEPILI

b One or more blanks.

Example:

 DBPEPILI

Function Call Macros
The following macros are used to invoke the supplied functions:

ALLOC_MEMORY

Used to get dynamic storage for use during the procedure execution. Check for a
non-zero return code. An error message will have been put into TEXT if an error
occurred.

Using Database Procedures 9–9

Function Call Macros

__

 name name: symbol. Begin name in column 1

b One or more blanks

ALLOC_MEMORY

b One or more blanks.

memsize memsize: decimal, register (2)-(12), or RS-type address

,memptr memptr: A-type address or register (2)-(12)

__

MEMSIZE
This specifies the amount of memory to be allocated. The total amount of
memory that can be allocated is controlled by a System Logical in the
IIPARM file. (The logical is IDMS_DBPROCS_MEMORY.)

,MEMPTR
This is the storage location to receive the address of the allocated memory.

Example to allocate 512 bytes of memory:

 ALLOC_MEMORY MEMSIZE,MEMPTR
 LTR R15,R15
 BNZ ALLOCERR

MEMSIZE DC F’512’
MEMPTR DS A

FREE_MEMORY

Used to free memory obtained via the ALLOC_MEMORY macro. Check for a
non-zero return code. Do Not Do Partial Frees. Always free the entire amount.
The interface program will free any areas that are not explicitly freed and send a
message to the IIERLOG file.

 name name: symbol. Begin name in column 1

b One or more blanks

9–10 Installation and Operations Guide

Function Call Macros

FREE_MEMORY

b One or more blanks.

memsize memsize: decimal, register (2)-(12), or RS-type address

,memptr memptr: A-type address or register (2)-(12)

__

MEMSIZE

This specifies the amount of memory to be freed.

,MEMPTR

This is the storage location that points to the address of the allocated
memory.

Example to free 512 bytes pointed to by register 2:

 FREE_MEMORY 512,(R2)
 LTR R15,R15
 BNZ FREEERR

END_TRANSACTION

Used to indicate that a DBMS commit or rollback has been done. This macro
should not be used if no DBMS calls are performed.

 name name: symbol. Begin name in column 1

b One or more blanks

END_TRANSACTION

b One or more blanks.

Example:

 END_TRANSACTION

Using Database Procedures 9–11

Function Call Macros

DEFINE_MESSAGE

Used to set up a null terminated message that can be sent to the client via a
SEND_MESSAGE or to the trace file via a PROC_TRACE.

 name name: symbol. Begin name in column 1.

b One or more blanks.

DEFINE_MESSAGE

b One or more blanks

MSG=’msg’ msg: The message to be defined.

 ,LEN=len len: decimal digit. Optional len of message.

__

MSG=

 The string of characters that make up the message within single quotes.

,LEN=

 An optional length for the message. Could be used to set a standard length.

If a ‘name’ is specified, a symbol for the overall length (including null) is
generated in the form of ‘NAME#L’.

Example:

DEFMSG DEFINE_MESSAGE LEN=30,MSG=’A defined_message’

SEND_MESSAGE

Used to send a message back to the client.

Note: Messages are sent back as Error transactions. ODBC clients can not handle
data sent back to the client in this manner.

 name name: symbol. Begin the name in column 1.

b One or more blanks

9–12 Installation and Operations Guide

Function Call Macros

SEND_MESSAGE

b One or more blanks.

 code code: decimal digit

,msg msg: literal, RX-type address or register (2)-(12)

__

code

 An optional code that could be used as an identifier. Defaults to 0.

,msg

 The message to be sent out to the client.

Examples:

 SEND_MESSAGE 0,’Message from a literal’
 SEND_MESSAGE 0,TMMSG
 SEND_MESSAGE 0,TMMSG1
 LTR R15,R15
 BNZ MSGERR

TMMSG DC C’Message from a DC’,X’00’ Null terminated
TMMSG1 DEFINE_MESSAGE LEN=30,MSG=’A define_message message’

PROC_TRACE

Used to send a trace message to the gateways IIGWTR trace file.

 name name: symbol. Begin name in column 1.

b One or more blanks.

PROC_TRACE

b One or more blanks.

msg msg: RX-type of address

__

Using Database Procedures 9–13

Function Call Macros

msg
 Address of the null terminated message that is to be sent to the IIGWTR

trace file.

Example:

 PROC_TRACE TRACE_MSG

TRACE_MSG DC C’This is a trace file message’,X’00’ Null terminated

CALL_EXCI

Used to communicate with a CICS system with EXCI. The DBPEXCI control
block must be set up prior to this. Refer to the sample EXCI program
(SASMECIT) to see how this is done.

 name name: symbol. Begin name in column 1.

b One or more blanks.

CALL_EXCI

b One or more blanks.

There are no direct parameters for this macro.

It assumes that the DBPEXCI control structure is addressable and has been filled
in properly.

Example:

 CALL_EXCI
 LTR R15,R15
 BNZ EXCIERR

SEND_DESCRIPTOR

Used to send out a tuple descriptor to the client. This defines the rows (tuples)
that will be sent to the client via the SEND_DATA macros that send out the data.
Do not continue with SEND_DATAs unless you receive a zero return code from
this process.

 name name: symbol. Begin name in column 1

9–14 Installation and Operations Guide

Function Call Macros

b One or more blanks

SEND_DESCRIPTOR

b One or more blanks.

 SQLDA=addr addr: A-type address
 Default: OSQLDA

__

SQLDA=
Gives the address of the pointer to the SQLDA to use for sending out data
rows to the client. This defaults to the Output SQLDA (OSQLDA).

Example of sending the descriptor:

 SEND_DESCRIPTOR SQLDA=OSQLDA
 LTR R15,R15
 BNZ DESCERR

OSQLDA is the Output SQLDA that is an input to the program.

SEND_DATA

Used to send an individual row back to the client or to indicate that all rows
have been sent. Always issue an ‘all rows sent’ call, even after an error on a row
send. An error message will have been put into TEXT if an error occurred.

 name name: symbol. Begin name in column 1

b One or more blanks

SEND_DATA

b One or more blanks

0 dataend: 0 = no, send out another row
1 1 = yes, ‘all rows sent’

 ,SQLDA=addr addr: A-type address
 Default: OSQLDA

dataend

Using Database Procedures 9–15

Function Call Macros

Indicates whether this call is sending a row or indicating that all rows have
been sent.

,SQLDA
Gives the address of the pointer to the SQLDA to use for sending out data
rows to the client. This defaults to the Output SQLDA (OSQLDA) pointer.

Example of sending one row:

 SEND_DATA 0,SQLDA=OSQLDA send a row
* No test for error because program falls through to ‘all rows sent’
 SEND_DATA 1,SQLDA=OSQLDA indicate all rows sent
 LTR R15,R15
 BNZ DATAERR

OSQLDA is the Output SQLDA that is an input to the program.

GET_VARIABLE

Used to retrieve a field from an SQLDA structure. The data will be returned to
the program. The LEN limits the amount to be returned and must be large
enough to accommodate the field. Any errors (indicated by a non-zero return
code) will have a message put into the TEXT (a program input parameter)
message area. The variable can be retrieved either by name or index (relative to
0) position.

 name name: symbol. Begin name in column 1.

b One or more blanks

GET_VARIABLE

b One or more blanks.

LEN=len len: symbol, decimal or register (2)-(12)

,ADDR=addr addr: RX-type address or register (2)-(12)

,NAME=name name: RX-type address or register (2)-(12)
,INDEX=index index: symbol, decimal digit, or register (2)-(12)

 ,SQLDA=sqlda sqlda: A-type address or register (2)-(12)
 Default: ISQLDA

9–16 Installation and Operations Guide

Function Call Macros

LEN=
Specifies the length of the receiving field. Use of register notation means that
the length is contained in the specified register. An error will be generated if
this is not large enough to hold the field. An error message will be placed
into the TEXT area. The actual length of the data will be placed into the call
area parameter GETVLEN. It will be zero for a null field.

,ADDR=
Specifies the address of the receiving field.

,NAME=
Name is the pointer to a location or a register notation for a register that
contains the address of the location. The format of the location is a half-word
length followed by the value of the name. The maximum length of a name
for CA-IDMS is 32.
NAME DC H’16’,CL16’VAR_SIXTEEN’

,INDEX=
Index is the value (relative to 0) or a register notation for a register that
contains the value for the variable to be retrieved.

,SQLDA=
The pointer to the SQLDA structure that the data is to be retrieved from. The
default is the Input SQLDA (ISQLDA).

In the call area, a field (DBPGVVAR) will contain the pointer to the SQLVARN
for the variable upon successful completion. DBPGVDAT will also be set for the
pointer of the DATAVARN for this variable. These fields could be copied into
others for use later on to directly access the metadata, data, or null indicators.

Example to get the second variable (the two macros are equivalent since
INAME1 is the name of the second variable):

 GET_VARIABLE LEN=64,ADDR=GVDATA,NAME=INAME1
 GET_VARIABLE LEN=64,ADDR=GVDATA,INDEX=1
 LTR R15,R15
 BNZ GETERR

INAME1 DC H’12’,C’VAR_NUMBER_2’

PUT_VARIABLE

Used to place data into an SQLDA (normally the output one) to have it sent back
to the client. Check the return code after execution. If it is non-zero, an error
message will have been placed into the TEXT message area.

Using Database Procedures 9–17

Function Call Macros

 name name: symbol. Begin name in column 1.

b One or more blanks

PUT_VARIABLE

b One or more blanks.

LEN=len len: symbol, decimal or register (2)-(12)

,ADDR=addr addr: RX-type address or register (2)-(12)

,NAME=name name: RX-type address or register (2)-(12)
,INDEX=index index: symbol, decimal digit, or register (2)-(12)

 ,SQLDA=sqlda sqlda: A-type address or register (2)-(12)
 Default: OSQLDA

__

LEN=
Specifies the length of the variable field. Use of register notation means that
the length is contained in the specified register. An error will be generated if
this is not large enough to hold the field. An error message will be placed
into the TEXT area. It will be zero for a null field.

,ADDR=
Specifies the address of the variable field.

,NAME=
Name is the pointer to a location or a register notation for a register that
contains the address of the location. The format of the location is a half-word
length followed by the value of the name. The maximum length of a name
for CA-IDMS is 32.
NAME DC H’16’,CL16’VAR_SIXTEEN’

,INDEX=
Index is the value (relative to 0) or a register notation for a register that
contains the value for the variable.

,SQLDA=
Specifies the pointer to what SQLDA structure the data is to be put into. The
Output SQLDA (OSQLDA) is the default.

In the call area, a field (DBPPVVAR) will contain the pointer to the SQLVARN
for the variable upon successful completion. DBPPVDAT will also be set for the
pointer of the DATAVARN for this variable. These fields could be copied into
others for use later on to directly access the metadata, data, or null indicators.

9–18 Installation and Operations Guide

Function Call Macros

Example:

 PUT_VARIABLE LEN=4,ADDR=INTEGER,NAME=COST
 LA R2,4
 PUT_VARIABLE LEN=(R2),ADDR=INTEGER,INDEX=2
 LTR R15,R15
 BNZ PUTERR

COST DC H’4’,C’COST’

GET_IDMS_VARIABLES

Used to get a set of non-null variables from an SQLDA starting with the first
variable. There is no call to the interface program. This macro expands inline for
each variable. This is handy to take a tuple data area and to place it into a non-
tuple data area. This goes directly into the Input SQLDA. This macro uses R0,
R1, R14 and R15.

GET_IDMS_VARIABLES VAR0,VAR1,VAR2,VAR3,VAR4,VAR5,VAR

Each VARx is the address of variable to receive data from the Input SQLDA.

Example—where R3 is pointing to a contiguous area to retrieve a 10 byte field, a
20 byte field, a 6 byte field, a 4 byte field, and a 40 byte field:

 LA R3,RECORD
 GET_OUTPUT_VARIABLES 0(R3),10(R3),30(R3),36(R3),40(R3)

PUT_IDMS_VARIABLES

Used to put a set of non-null variables into an SQLDA starting with the first
variable. There is no call to the interface program. This macro expands inline for
each variable.

This is handy to take a non-tuple data area and to place it into a tuple data area.
This goes directly into the Output SQLDA. This macro uses R0, R1, R14, and
R15. R2 is also used for CA-Datacom/DB.

 PUT_IDMS_VARIABLES VAR0,VAR1,VAR2,VAR3,VAR4,VAR5,VAR6

 Each VARx is the address of variable to be put into the Output SQLDA.

Using Database Procedures 9–19

Data Handling in Assembler

Example—to put the same fields retrieved with the above
GET_OUTPUT_VARIABLES:

 LA R3,RECORD
 PUT_OUTPUT_VARIABLES 0(R3),10(R3),30(R3),36(R3),40(R3)

Data Handling in Assembler
The input and output SQLDAs contain metadata about the data along with
pointers to the data and to null indicators.

An important point to remember, is that the data for a tuple is not just a
contiguous set of bytes necessarily. Access to the data portion should be done
through supplied macros or by using the data pointers from the SQLDA and
associated metadata.

There are three parts to the SQLDA (macro DBPSQLDI).

1. The SQLDA base section. This contains allocated and used counts for the
number of elements contained in the SQLVARN. It also contains a pointer to
the DATAVARN section.

2. The SQLVARN section (immediately follows the base section) contains the
metadata for each used data item (field, column).

3. The DATAVARN section contains a pointer to the data and a pointer to the
null indicator for each used data item.

If you use the GET_VARIABLE macro, the DBPGVVAR field defined using the
DBPWORKI macro will contain a pointer to the SQLVARN entry for the
associated variable on completion. Also, the DBGVDAT field will point to the
DATAVARN entry. This macro uses the input SQLDA by default. SECHOPRC
in the SAMPLE.ASM library uses the GET_VARIABLE macro.

If you use the PUT_VARIABLE macro, the DBPPVVAR field defined using the
DBPWORKI macro will contain a pointer to the SQLVARN entry for the
associated variable on completion. Also, the DBPPVDAT field will point to the
DATAVARN entry. This macro uses the output SQLDA by default.

The GET_OUTPUT_VARIABLES and the PUT_OUTPUT_VARIABLES macros
can be used to get or put more than one non-null field at a time starting with the
first field.

SASMECIT in the SAMPLE.ASM library uses the PUT_OUTPUT_VARIABLES
macro.

9–20 Installation and Operations Guide

Implementing Database Procedures

Implementing Database Procedures
To implement a database procedure, you need to perform the following steps:

In this procedure, the output of one step becomes the input of the next step.

1. Code the database procedure using one of the appropriate sample
procedures supplied in the following sections.

2. Compile (assemble) the database procedure to produce an object deck that
will be input into the next step.

3. Link edit the object deck and pull in any referenced language specific
routines along with the required language specific interface module.

The external reference in the interface module must be changed (by means of
a linkedit statement) to reference the new database procedure code.

4. Register the database procedure with the gateway.

See the Register Procedure Statement section for more information.

Steps 2 and 3 are performed by a single job using a customized job that is placed
into USER.CNTL during stage1/stage2 processing. See the Assembler Database
Procedures section.

Step 4 is run through the gateway. The sample procedures use SQL for the
Terminal Monitor program to perform the register and test the procedure. The
Terminal Monitor SQL is located in the FILES.SQL library. SAMPLE.CNTL
members contain the JCL necessary to run the Terminal Monitor program.

Assembler Database Procedures

Database procedures written in Assembler can follow the standard IBM 370
coding conventions. An interface program (SASMINT) and a set of macros
(DBPxxxxx) are provided to help you develop these procedures. The “Database
Procedure Examples” appendix contains an annotated sample Assembler
database procedure and describes the available macros.

Code the database procedure using one of the following supplied sample
procedures as a starting point. The supplied samples are:

SASMECIT A sample that returns rows from a CICS transaction invoked

by means of the CICS EXCI interface.

SASMTST A sample that shows the use of the DBPxxxxx macros.

Using Database Procedures 9–21

Coding Database Procedures

SECHOPRC A sample that simply echoes the values that come into the
database procedure. The input SQLDA is used for this as
opposed to the output SQLDA which is normally sent out by
means of the SEND_DESC and SEND_DATAs. The input
SQLDA contains both the registered input and output fields.
This sample allows the user to test the way fields are
registered to assure that the defaults desired are set up
properly.

Implementing an Assembler database procedure involves using
USER.CNTL(SASMIDMN), the customized job that performs the compile and
link edit. This job accomplishes Steps 2-3 of the implementation as described in
the Implementing Database Procedures section. (Make the noted modifications
before submitting the JCL.)

You must register the database procedure with the gateway. (Registrations for the
supplied samples are contained in the FILES.SQL library with a member name
equal to the above listed samples.)

Coding Database Procedures
The following sections describe coding database procedures.

Coding Conventions

The IBM Standard Assembler SASMINT interface program is supplied with the
CA-IDMS gateway.

The interface program allows the database procedure to be coded in the normal
language conventions. This avoids the problem of using an unfamiliar
convention as was required for Assembler in previous releases. Also, any earlier
Whitesmith C procedures can cause problems if not handled correctly (no
globals and no main). It is recommended that any new database procedures use
the provided interface programs and follow the normal coding conventions for
the chosen language. The examples provided in SASMxxx in the SAMPLE.XXX
libraries should be used as starting points.

APF Authorization

In order to execute database procedures, the procedures must reside in an APF-
authorized load library. The library must be in either the system linklist or the
gateway server procedure STEPLIB or JOBLIB.

9–22 Installation and Operations Guide

Registering Database Procedures

Optionally, if a library is provided by means of the IIUSRLIB DD statement, this
library can be unauthorized and any database procedures in the library can be
executed by the gateway.

Registering Database Procedures
This section describes the register procedure statement and the permissions
required to issue it.

Register Procedure Statement

To register a procedure with a server so that it can be invoked by the execute
procedure statement, use the following syntax:

register procedure proc_name
 (param_nameformat qualifiers{,param_name format qualifiers)
 as [import|select_procedure|function] [from'source']

Parameter Description

proc_name Specifies the procedure name.

param_name Specifies the input parameter name.

format

Specifies the data type and length of param_name. Must be an
OpenSQL data type supported by the CA-IDMS gateway. The
syntax is:

datatype

Using Database Procedures 9–23

Registering Database Procedures

Parameter Description

qualifiers Optional parameter qualifiers: Only one of each type can be
used per parameter.
[[[not null]|[not default]|
[with null]|[with default]|
[default value]]
|[[select_out]| [output]] |
[[as name]|[is 'name']]

Valid defaults for data types are:

date CURRENT_DATE |CURRENT_TIMESTAMP
 |'quoted date string'

char 'quoted literal' | NULL | USER
varchar 'quoted literal' | NULL | USER
float numeric literal
int numeric literal

System Defaults for data types (with default) are:

Date 0 date
char ' '
varchar ''
float 0.0
int 0

from 'source' Specifies the name or identification of the host DBMS or
external procedure, if its name is different from proc_name.

Enclose the value for source in single quotes.

For example:
register procedure usrprcc
 (p_category char(10) not null,
 p_vehicle_id char(03) not null
as import from 'usrprcc'
\p\g
register procedure "$DBAIIS6".selproc (i int,
 o1 int select_out default 0 is 'OUT1',
 o2 date select_out default current_timestamp is
 'OUT2',
 o3 char(4) select_out is 'OUT3',
 o4 varchar(8) select_out is 'OUT4',
 o5 float select_out not null is 'OUT5')
as select_procedure \p\g

Permissions

You can register a database procedure if you have been granted insert
permission on the following system catalogs:

9–24 Installation and Operations Guide

Executing Database Procedures

■ IIGWPROCEDURES

■ IIGWPROCPARAMS

■ IIGWPROCDEFAULTS

The same rules are applicable for the remove procedure except that users must
have been granted delete permission on the previously mentioned catalogs.

Executing Database Procedures
This section describes how to execute database procedures.

Preparing to Execute Procedures

Before you invoke a database procedure, you must create it on the host operating
system. You must also register the procedure.

Execute Procedure Statement

To invoke a defined procedure, use the following syntax:

execute procedure proc_name
 (param_name = param_value {,param_name = param_value})
 into return_status)

Parameter Description

proc_name Procedure name

param_name Input parameter name

param_value A numeric or string literal or host variable that is
compatible in type to the type of the parameter or the null
constant

return_status A host integer variable

Parameters are specified by name, not position, and are passed by value.
Nullability and defaults follow standard EDBC semantics.

When the client issues the execute procedure statement, the gateway will load,
initialize, and pass control to the specified procedure running under the gateway
thread.

Using Database Procedures 9–25

Removing Database Procedures

Select Procedure Statement

For select procedures, the execute does not actually invoke the procedure. It only
sets up the parameters in the input and output SQLDAs.

The actual invocation is done using the following syntax:
select procname();

If you are using embedded SQL, the syntax is:
EXEC SQL select procname()
 into :var1, :var2,....

Only select loop processing is supported. Cursor processing or repeat queries are
not allowed. The database procedure is effectively a repeated query.

Removing Database Procedures
To remove a procedure registration, use the following syntax:

remove procedure proc_name

where proc_name is the name of the procedure you want to drop.

The owner of the database procedure is the user who issued the create procedure
statement.

Users can issue the remove procedure statement if they have been granted delete
permission on the following system catalogs:

■ IIGWPROCEDURES

■ IIGWPROCPARAMS

■ IIGWPROCDEFAULTS

Verifying Database Procedures
To test the functionality of database procedures, the stage2 job, IGWFVPM9,
registers and executes sample database procedures. These database procedures
are invoked by means of the EDBC/Terminal Monitor as a batch job. The
following scripts are used as input to the Terminal Monitor run:

EDBC.V2R3.FILES.SQL(SASMTST)
EDBC.V2R3.FILES.SQL(SECHOPRC)

9–26 Installation and Operations Guide

Planning for EXCI Database Procedures

The source for these sample database procedures is described in the
Implementing Database Procedures section.

Planning for EXCI Database Procedures
The External CICS Interface (EXCI), which is part of CICS4.1, has been
implemented into the database procedure support of the gateway.

A sample Assembler database procedure (SASMECIT) has been provided.
SASMECIT runs in conjunction with the EXCI sample server program
DFH$AXCS. The EXCI server program accesses an external file that consists of
80 byte records. The records in the file are returned one at a time to SASMECIT,
which sends them to the client as rows. Each 80 byte record has been broken
down into 7 fields (columns). The column definitions are contained within the
registration script for the SASMECIT database procedure (refer to SASMECIT in
the FILES.SQL library).

To assemble SASMECIT, a CICS macro library (SDFHMAC) is required in order
to pick up the DFHXCPLD macro.

To execute SASMECIT, a CICS load library (SDFHEXCI) is required in order for
the gateway to pick up the EXCI interface programs.

Before attempting to test with SASMECIT, EXCI should be implemented and
tested with the EXCI sample client program DFH$AXCC.

See the CICS/ESA - External CICS Interface Manual (SC33-1390-00) to do the EXCI
install and test.

The gateway implementation uses the EXCI CALL Interface. Of the six EXCI calls
within this interface, the gateway database procedure user just invokes the
DPL_Request. All other calls are handled internally by the gateway and are not
required within the database procedure. Within SASMECIT, a CALL_EXCI
macro is used with a single parameter (a pointer to a DBPEXCI control block).

The DBPEXCI has a pointer to a communications area (COMMAREA). The
COMMAREA is the data that is sent back and forth with the CICS transaction.

The database procedure only needs to deal with the DBPEXCI, the COMMAREA
and the CALL_EXCI macro. The DBPEXCI will indicate a transaction id of EXCI
and a program name of whatever program is to be invoked (DFH$AXCS in case
of the sample server program). The COMMAREA will contain whatever the
invoked program is expecting.

The logicals (for the EXCI sample) are:

Using Database Procedures 9–27

Planning for EXCI Database Procedures

■ II_EXCI_APPL_ID = 'IICDCICS';

■ II_EXCI_NET_NAME = 'BATCHCLI';

These logical are described in the “Logical Symbols and the IIPARM Clist”
appendix.

9–28 Installation and Operations Guide

Chapter

10 Optimizing and Troubleshooting

This chapter documents the several methods for improving the performance of
applications that run against the gateway and debugging errors that may occur
when you use the CA-IDMS gateway.

Optimizing Gateway Applications
This section is intended for application developers. It suggests several ways you
can enhance the way your applications run against the gateway.

CA-IDMS Optimization

The gateway interacts with CA-IDMS as a standard CA-IDMS application. All
CA-IDMS data accessed through the gateway remains completely under the
control of CA-IDMS and is governed by CA-IDMS rules. As with any other
CA-IDMS application, CA-IDMS determines data access permissions, optimum
data access path, and data integrity and recovery.

Since CA-IDMS performs the query optimization, most query optimization can
be done as you would any other CA-IDMS application. For example, you can
utilize the CA-IDMS explain feature using the direct execute immediate
statement. The explain command is a CA-IDMS-specific feature and is not
OpenSQL, and therefore is not supported under OpenSQL. However, you can
utilize this feature with the gateway using the direct execute immediate
statement, which allows you to send non-OpenSQL statements directly to the
host DBMS.

From the EDBC user interface, issue the following statement to invoke the
CA-IDMS explain command for your query.

direct execute immediate
 explain statement 'SQL-statement'

Optimizing and Troubleshooting 10–1

Optimizing Gateway Applications

CA-IDMS performs the explain on your query and stores the data access
information in a CA-IDMS table ACCESS_PLAN with the key column,
SECTION, set to 0. To access the results of the CA-IDMS explain, execute the
following query:

select * from schema.access_plan

or you could use any EDBC user interface to access and format this data as you
would any other table. For further information, see the CA-IDMS SQL Reference
Guide.

Gateway Overhead

The gateway must translate queries and convert data types between OpenSQL
and the CA-IDMS dialect of SQL. As a result, accessing CA-IDMS data through
the gateway is somewhat slower than accessing the same data from a native
CA-IDMS program. The gateway compares favorably with native applications
doing fairly complex queries. The overhead is higher and the performance is
slower when the gateway must process a large number of simple queries.

Gateway Query Handling

Different types of queries to the gateway require different amounts of
processing. There are three categories of queries:

■ For a direct execute immediate statement, which cannot return any data, the
gateway:

– Extracts the statement

– Passes it on to CA-IDMS as a text string, without doing any translation,
any syntax checking, or any further processing

■ For an execute immediate statement, which also cannot return any data, the
gateway:

– Extracts the query

– Translates the query from OpenSQL into the CA-IDMS dialect of SQL

– Executes the query

■ For a standard query that is going to return data, the gateway:

– Extracts the query

– Translates the query from OpenSQL into the CA-IDMS dialect of SQL

– Converts the data types from OpenSQL to CA-IDMS SQL

– Prepares the query by saving, encoding, and naming it

10–2 Installation and Operations Guide

Optimizing Gateway Applications

– Describes the query, defining a program descriptor to identify the data
and data types for retrieval

– Opens a cursor

– Executes the query with an execute or a fetch statement

These differences in query processing affect how the gateway performs when it
runs your application. For statements that do not return data, the gateway
processes a direct execute immediate statement most rapidly. This type of query
reduces gateway overhead to a minimum, but severely limits the portability of
applications.

Other Ways to Increase Gateway Performance

You can enhance the gateway’s performance by reducing the required
communication between the EDBC user interface and the gateway. For example,
a select loop buffers several rows of data from CA-IDMS in the gateway, then
packages this data together and returns it as a single message. This minimizes
the number of separate transactions that must occur between the gateway and
the EDBC user interfaces.

The following features have different effects, but can all improve application
performance:

■ Using select loops

■ Using gateway extensions to OpenSQL that provide a one-to-many mapping
with CA-IDMS statements

■ Using repeated queries

Using Select Loops You can use select loops in an embedded OpenSQL program to retrieve
multiple rows when no data will be updated. With a select loop, the gateway
can declare and open a cursor, fetch all the rows, and close the cursor with a
minimum of communication with the EDBC user interface. This is particularly
useful when the users are remote and you want to minimize the traffic across
the network.

Using Gateway
Extensions to
OpenSQL

Most queries through the gateway have a one-to-one mapping between the
OpenSQL function and the corresponding function in CA-IDMS SQL. But
certain extensions, such as create table as select, allow the user interface to issue
a single OpenSQL command, which the gateway translates into multiple
CA-IDMS-specific SQL commands. The CA-IDMS system executes these
statements. The gateway then returns a message to the user interface indicating
that the operation is accomplished.

Optimizing and Troubleshooting 10–3

Error Handling

Using Repeated
Queries

If you are issuing a statement in an embedded OpenSQL program more than
once, you can improve gateway performance significantly by using repeated
queries. Repeated queries allow you to retain query definitions for the duration
of a session. You can use program variables with a repeated query statement
just as you would with a regular query statement. The variables are evaluated
each time the statement is executed.

You can create repeated queries with the following OpenSQL statements:

■ select (regular, singleton, or loop)

■ insert

■ update

■ delete

To use a repeated query, preface the query statement with the key word
repeated. For example:
exec sql repeated insert into table2 (col1, col2)
values (:ivar, :cvar)

CA-IDMS discards the query execution access when it encounters a commit, so
be mindful of the effect that a commit statement has on repeated queries. The
gateway does automatically prepare the query execution module a second time,
if necessary, after a commit, without requiring any special action by the
program.

Executing a
Statement
Dynamically

A statement that will be repeated can also be executed dynamically. Dynamic
SQL for EDBC applications does not incur much additional overhead compared
to non-dynamic statements using program variables.

Error Handling
This section discusses the how to handle run-time errors that can occur with the
gateway.

CA-IDMS Error Reporting

When CA-IDMS reports an error, the gateway maps this error message to one of
a series of generic error codes that are used across all the EDBC gateways. This
mapping scheme enhances application portability.

10–4 Installation and Operations Guide

Debugging the Gateway

Gateway Error Reporting

Some errors are detected by the gateway itself rather than by CA-IDMS. For
example, if you mistype a command and the gateway cannot recognize the
query, it provides an OpenSQL generic error message. This is displayed as a text
message enclosed in parentheses. For example, if you type in:
sselect * from sales

the gateway returns the following generic error message:
(statement syntax error)

See the OpenSQL Reference Guide and the embedded SQL companion guides for
the various host languages for further information on error handling.

You can access various types of error information using the techniques described
in the following table:

Method Returns

SQLCA.SQLCODE OpenSQL Generic Error code.

SQLCA.SQLERRD(0) CA-IDMS SQL SQLCODE: an array of
integers. The first entry in that array is the
CA-IDMS-specific error code.

SQLCA.SQLERRM First 70 characters of the CA-IDMS error
message text. This also contains the
variables if the message comes from
CA-IDMS.

whenever SQLERROR call
SQLPRINT

Entire CA-IDMS error message text.

See the OpenSQL Reference Guide for details on SQLCA (SQL Communications
Area).

Debugging the Gateway
The gateway is primarily responsible for translating between OpenSQL and the
CA-IDMS dialect of SQL. Most errors in gateway operation can be classified as
one of the following types:

■ Syntax errors

■ Incorrect return codes

■ Incorrect semantics

Optimizing and Troubleshooting 10–5

Debugging the Gateway

■ Data type errors

The following sections describe these errors in greater detail. They also offer
suggestions for isolating the cause of the error and for correcting it.

Syntax Errors

In this type of error, the gateway returns an error message when a query is run
against CA-IDMS. When the same query is submitted against a local database,
no error message is returned. There are several possible causes for syntax errors:

■ The query is valid EDBC SQL but not valid OpenSQL. Consult the OpenSQL
Reference Guide for the correct statement syntax.

■ The query is valid CA-IDMS SQL but not valid OpenSQL. Use the direct
execute immediate statement to pass CA-IDMS SQL statements through the
gateway.

■ The gateway routine does not pass the correct CA-IDMS SQL statements or
data to CA-IDMS. Report the problem to your site contact for Computer
Associates’ Technical Support.

■ The gateway passes the appropriate CA-IDMS SQL and data to CA-IDMS,
but CA-IDMS does not handle these correctly. Check your CA-IDMS
documentation for possible programming errors.

■ You are running a version of CA-IDMS that is not compatible with the
gateway. For software version requirements, see the Software Requirements
section of the “Preparing for Installation” chapter.

Incorrect Return Codes

This type of error occurs when a query is run against CA-IDMS and does not
return the expected error message. When the same query is run against a local
EDBC database, it returns the correct message.

To correct this error, the CA-IDMS error message must be mapped to the correct
EDBC Generic Error Message. Report the problem to your site contact for
Computer Associates’ Technical Support.

Incorrect Semantics

Sometimes a query returns the expected results when run against an EDBC
database, but fails to do so when run against CA-IDMS. If the gateway is passing
the correct SQL statements and data to CA-IDMS this type of error indicates an
incompatibility between the two SQL dialects. Report the problem to your site
contact for Computer Associates’ Technical Support.

10–6 Installation and Operations Guide

Gateway Traces

Data Type Errors

A data type error occurs when the gateway cannot translate CA-IDMS data into
the corresponding gateway data type. This occurs most often when EDBC
applications pass hard-coded dates to the gateway as character strings.

Gateway Traces
When you need to use a trace to determine the cause of a problem, you can use
one of the following two methods to initiate a trace:

■ By means of logical symbols in the IIPARM startup member.

This method affects all gateway connections so it should not be used during
high use time periods (an alternate server, as described in the “Maintaining
the Gateway” chapter, could be set up just for tracing if there are no good
time periods for this overall tracing).

 There are two logical symbols that can be used to initiate an overall trace.

– GW_TRACE_INIT = 'IBOBEXRSERDATR';

 This logical symbol starts tracing at the earliest possible moment during
the client connection. Any problems going to CA-IDMS can be
uncovered by using this logical. (The two character values are discussed
in the following method.)

– ING_GW_SET = 'SET TRACE IB,OB,EX,RS,ER,DA,TR LOCAL';
ING_GW_SET = 'SET TRACE ALL LOCAL';

 This logical symbol starts tracing after the CA-IDMS connection has been
established. (The two character values are discussed in the following
method.)

■ The client may send in the set trace command to start an individual trace.

This method allows a set notrace command to be used to turn off the
individual trace. The format of the set trace command is:

 SET TRACE {ID[,ID...] | ALL} [REMOTE | LOCAL | BOTH]}

 where REMOTE (send output back to client) is the default.

 where Trace point IDentifiers are:

– IB - Inbound messages

– OB - Outbound messages

– EX - Executing SQL

– RS - Results of SQL

– ER - Error conditions

Optimizing and Troubleshooting 10–7

Resetting the OS/390 Subsystem

– DA - Data (SQLDA) contents

– TR - Trace points

– ME - Memory allocate/free

– HO - Host information (This option generates a large amount of output.)

Resetting the OS/390 Subsystem
At times, it may be necessary to reset the OS/390 subsystem for the EDBC
server. For instance, if the server abends or stops abnormally, it is possible that
the next time it is started that it will not be able to come up and will end with a
return code of 20.

When this occurs, the OS/390 subsystem must be reset.

10–8 Installation and Operations Guide

Chapter

11 Using Table Procedures

The CA-IDMS gateway provides support for table procedures to allow remote
users to invoke user-written procedures on the host operating system.

Your primary source of information about table procedures is the documentation
for the appropriate platform. This chapter does not summarize that information.
Instead, it addresses the aspects of working with table procedures that are
particular to CA-IDMS. This chapter:

■ Summarizes the input parameters provided to table procedures

■ Discusses accessing table procedures

■ Describes the table procedure functions

■ Outlines the coding conventions for table procedures

■ Discusses special considerations for table procedures

Table Procedures
A table procedure is a user-written program that allows any data accessible
through CA-IDMS to be viewed and processed as a table. The parameters passed
to and from the program are treated as the columns of a table which, once
defined to CA-IDMS as a table procedure, can be operated on using SQL DML
statements. The specifics of how the database is accessed in handling these
requests is hidden within the table procedure. The SQL referred to in this chapter
is the CA-IDMS SQL.

When to Use Table Procedures

Table procedures are used to process non-SQL defined data in a relational way
although the data does not conform to the rules established for such access. For
example, table procedures can be used to:

■ Provide full update capability on member records that do not contain
embedded foreign keys

■ Access data with multiple definitions

Using Table Procedures 11–1

Defining and Using Table Procedures

■ Access data that does not conform to the data type defined in the non-SQL
schema

■ Translate special data values into null values

■ Make the processing of complex structures, such as bill-of-materials, easier
for an end user.

 Since the details of access to the underlying records or tables is encapsulated
within the procedure, less knowledge is required on behalf of the user to
process the data.

■ Allow access to all segments of a segmented database within a single SQL
transaction.

 Since a table procedure can open more than one rununit or SQL session
simultaneously, it can access the appropriate segment based on the value of
an input parameter. If no appropriate segment key is available, it can serially
access each segment.

■ Access remote data.

 This enables a single SQL transaction to access data distributed across
different nodes within a CA-IDMS network while hiding the knowledge of
the location of the data within the procedure itself.

Defining and Using Table Procedures
The following sections describe how to define and use table procedures.

Defining a Table Procedure

Use the create table procedure statement to define a table procedure as shown in
the following example:
create table procedure emp.org
 (top_key unsigned numeric(4),
 level smallint,
 mgr_id unsigned numeric(4),
 mgr_lname char(25),
 emp_id unsigned numeric(4),
 emp_lname char(25),
 start_date char(10),
 structure_code char(2))
 external name procorgu;

The table procedure, org, is named and associated with the schema, emp. The
program to be called to service a DML request against the procedure is specified
in the external name parameter as procorgu.

11–2 Installation and Operations Guide

Defining and Using Table Procedures

The parameters to be passed to and from the procedure are then listed. Each
parameter definition should at least contain a name and a data type.

For more information on defining table procedures, see the SQL Reference Guide.

Accessing Table Procedures

Use SQL DML statement to access table procedures in the same way base tables
and views are accessed. Table procedures can be referenced any place a table
reference is permitted. Whether or not an SQL operation is supported by a
specific table procedure is dependent on the user-written program. It may, for
example, support only retrieval operations and disallow insert, update, and
delete by returning an error if such an operation is attempted.

Access to a table procedure is controlled just as if it were a table. The grant and
revoke statements on a resource type of table are used to give and remove select,
insert, update, delete or define privileges on a table procedure.

Procedure Parameters

Table procedure parameters are treated like table columns. They can be specified
within the column list of a select or insert statement, the set clause of an update
statement, the order by clause of a select statement or the search criteria of a
where clause. In addition, input parameter values may be specified within the
procedure reference itself.

Column List, Set, and
Order By References

Parameters referenced in the:

■ Column list of a select statement specify the columns that will be returned to
the invoking application

■ Column list of an insert statement specify the columns whose values are
supplied in the subsequent values clause or query-specification

■ Set clause of an update statement specify the columns which will be assigned
new values during the update operation

■ Order by clause of a select statement determine the order in which the result
rows of the procedure are returned to the requesting application

Where Clause
References

Where clause references to parameters filter a procedure’s output. Each time a
procedure returns a set of output values, they are evaluated against the
selection criteria specified in the where clause and non-conforming rows are
ignored.

Using Table Procedures 11–3

Defining and Using Table Procedures

Also, where clause parameter references can pass input values to the procedure.
For example, selection criteria of the form:
<Parameter> = <Value>

results in <Value> being passed to the procedure. Other types of selection
criteria, such as in predicates or comparison predicates with > or < operators
have no effect on the value of the parameters passed to the procedure.

Specifically, a reference to a parameter in a where clause results in an input
value being passed to the procedure only if the following occurs:

■ It appears within an equality test

■ The equality test is not combined with other predicates in the where clause
through the use of the or operator

■ The equality test is not preceded by the not operator

The following table illustrates these points:

Where Clause Parameter Value

P1 P2

P1 = 1 1 -null-

P1 < 1 -null- -null-

P1 = C1 C1 -null

P1 = 2 AND P2 = 3 2 3

P1=2 AND P2>3 2 -null-

P1 = 2 OR P2 = 3 -null- -null-

P1 IN (2, 3, 8) -null- -null-

Parameters in
Procedure
References

Input parameter values can also be specified within the procedure reference
itself. They may be specified on any reference to a procedure except within an
insert statement.

Parameter values supplied on a procedure reference may be specified either by
their position or as keyword/value pairs. They may also be combined with
where clause references to form the set of values that will be passed to the
procedure.

All of the following are valid ways in which to specify input parameter values.
Select * from emp.org (mgr_id = 7, emp_id = 127)
select * from emp.org (cast(null as num(4,0)), 7, 127)
select * from emp.org (mgr_id = 7) where emp_id = 127

11–4 Installation and Operations Guide

Defining and Using Table Procedures

Differences in
Parameter
Specification

There is a difference between parameter values specified through a where
clause and those specified within the procedure reference. Parameter values
specified within the procedure reference are not used to filter the output from
the procedure as is the case for those specified within the where clause.
Parameter values specified within the procedure reference affect only the input
to the procedure and not the output from the procedure.

Coding Table Procedures

The program associated with a table procedure may be written in COBOL, PL/I,
or Assembler. When called, the program is passed a fixed parameter list
consisting of the parameters specified on the procedure definition as well as
additional parameters used for communication between CA-IDMS and the
procedure.

Whenever a reference to a table procedure is made, CA-IDMS calls the program
associated with the procedure to service the request. Part of the information
passed to the procedure is an indication of the type of action that the procedure
is to perform, such as return the next result row or update the current row. The
procedure responds by performing the requested action or returning an error.

Transaction and session management are performed automatically by CA-IDMS
in response to requests issued by the originating application. Changes to the
database made by a procedure are committed or rolled out together with other
changes made within the SQL transaction. No special action is required of the
procedure in order to ensure this occurs.

Calling Arguments Each time a procedure is called, it is passed the following sets of arguments:

■ one argument for each of the parameters specified on the procedure
definition, passed in the order in which the parameters were declared

■ one argument for each null indicator associated with a parameter specified
in the procedure definition, passed in the order in which the parameters
were declared

■ a set of common arguments used for communications between CA-IDMS
and the procedure

The first two sets of arguments described above will vary from one procedure to
another. They are used to pass selection criteria and insert/update values to the
procedure and result values from the procedure.

Using Table Procedures 11–5

Defining and Using Table Procedures

The last set of arguments is the same for all procedures as shown in the
following table:

Argument Contents

Result Indicator (fullword) Not used

sqlstate (char(5)) Status code returned by the procedure as follows:
00000 - indicates success
01Hxx - indicates a warning
02000 - indicates no more rows
38xxx - indicates an error

Procedure Name (char
(18))

Name of the procedure.

Program Name
(char (8))

Name of the program.

Message Text
(char (80))

Message text returned by the procedure and
displayed by CA-IDMS in the event of an error or
warning.

SQL Command Code
(fullword)

Code indicating the type of SQL request for which
the procedure is being called.

SQL Operation Code
(fullword)

Code indicating the type of request being made of
the procedure. The Procedure Calls section contains
a list of valid operation codes.

Instance Identifier
(fullword)

A unique value identifying the scan on which the
procedure is to operate.

Procedure Work Area
(user-defined)

A user-defined storage area maintained across calls
to the procedure.

Procedure Calls Part of the information passed to the procedure is the type of request being
made. This information is conveyed in two parameters. The first contains a
code indicating the type of SQL statement for which the request is being issued
(for example, insert, or open); the second is an internal operation code
indicating the type of action expected of the procedure.

11–6 Installation and Operations Guide

Defining and Using Table Procedures

The following operation codes are possible as shown in the following table:

Operation Code Meaning

Open Scan
(value 12)

Requests that the procedure prepare itself for returning a
set of result rows. Selection criteria specified in the where
clause or in the procedure reference may be passed as
arguments to the procedure.

Next Row
(value 16)

Requests that the procedure return the next result row for
the indicated scan. Next Row requests are repeated in
order to return all of the result rows for a scan. The
procedure can set an sqlstate value indicating that all rows
have been returned.

Close Scan
(value 20)

Informs the procedure that no further next row requests
will be issued for the scan. The procedure may free
resources in response to this request.

Update Row
(value 40)

Requests that the procedure update the current row of the
indicated scan using the values of the passed parameters
as the update values. Update row requests are issued in
response to either searched or positioned update
statements.

Delete Row
(value 36)

Requests that the procedure delete the current row of the
indicated scan. Delete row requests are issued in response
to either searched or positioned delete statements.

Insert Row
(value 32)

Requests that the procedure insert a row into the database
using the values of the passed parameters as the insert
values.

Suspend Scan (value
24)

Informs the procedure that the SQL session is being
suspended. The procedure may release resources in
response to this request.

Resume Scan
(value 28)

Informs the procedure that the indicated scan is being
resumed following a suspend. The procedure may re-
establish its state if necessary.

Both select statements and open, fetch, or close cursor requests will result in the
following set of calls to the procedure:
open scan
 next row (1 to n times)
close scan

A searched update statement will result in the following:

Using Table Procedures 11–7

Defining and Using Table Procedures

open scan
 next row \ (1 to n times)
 update row /
close scan

A positioned update statement associated with an open cursor will have a
similar calling sequence except that an update row request may not be issued
after every next row request.

Searched and positioned delete statements result in similar calling sequences to
those for searched and positioned update statements.

Insert statements result in a single call to the procedure for each row to be
inserted.

Parameter Arguments On entry to the procedure, the value of the arguments corresponding to the
parameters defined on the create procedure statement vary depending on the
type of operation being performed, as follows:

On an Open Scan request, non-null parameters contain one of the following:

■ The selection criteria specified in the where clause

■ The parameter values specified on the procedure reference

■ The datatype-specific default value if with default was specified in the
procedure definition

All other parameters contain nulls (for example, the null indicator for the
parameter is negative).

On an update row request, the parameters contain the values returned from the
previous Next Row request, overlaid with the values specified in the set clause of
the update statement.

On an insert row request, the parameters contain the values specified in the
values clause of the insert statement or the values returned by the select
associated with the insert statement. Unspecified values are either null or contain
the parameter’s default value.

On other types of requests, the contents of the parameters are undefined on
entry.

On exit from a next row request, the procedure is expected either to have set the
value of the parameter arguments and their indicators appropriately or to have
set an SQLSTATE value indicating no-more-rows. If an indicator parameter is set
to -1, the value of the corresponding parameter is ignored by
CA-IDMS.

Instance Identifier On every call issued to a procedure, a parameter is passed identifying the scan
to which the request is being directed.

11–8 Installation and Operations Guide

Special Considerations

In the case of insert, this has no meaning; however in all other cases (select,
update, delete, and cursored operations the instance id is used to distinguish one
execution thread from another.

If an application program is written to have two simultaneously open cursors
both of which reference the same procedure, the procedure must be able to
distinguish Next Row calls associated with one cursor from Next Row calls for
the other. The instance identifier is used for this purpose. Each cursor results in a
separately opened scan and each scan is assigned a unique instance identifier.
The procedure is responsible for maintaining enough information for each scan
(such as database keys) to enable it to return the next row of the scan.

Procedure Work Area Another parameter passed on each call to a procedure is a work area in which
the procedure may save information it wishes to preserve from one call to
another. Information cannot be saved within program variables (such as
working storage) because the program is invoked using a #LINK operation,
causing the program variables to be re-initialized on every call. The type of
information which may need to be preserved across calls are the:

■ Subschema control block for a rununit or the session identifier of an SQL
session

■ Database position information

■ Input parameter values used as selection criteria

A procedure work area is allocated by CA-IDMS when the first call to a
procedure is made. A different work area may be allocated each time a new scan
is initiated, or the same work area may be shared for all scans with which the
procedure is associated. The size of the work area and whether or not it is shared
across scans is specified as part of the procedure definition.

A procedure which updates the database should do so through only one rununit
or SQL transaction to avoid deadlocking against itself. So typically an update
procedure will use a shared work area in order to allow access the same
subschema control or SQL session identifier. A retrieval-only procedure may
instead use a separate work area for each scan, opening the rununit or SQL
session on the Open Scan request and terminating it on the Close Scan request.

Special Considerations
The following sections describe special considerations you should be aware of
when using table procedures.

Using Table Procedures 11–9

Special Considerations

Environment Independence

Since it is likely that a procedure will execute both within a batch address space
because of local mode access and within the DC/UCF address space, it should be
written to be independent of the runtime environment.

If a procedure will be executed in local mode (for example through IDMSBCF),
then it must either limit itself to database requests only or be written in
Assembler (or use an Assembler subroutine for DC/UCF requests)

Even if it is written in Assembler, many DC services such as Queue, Print, and
terminal I/O or not supported in local mode and should be avoided. Scratch and
storage requests issued from an Assembler program are supported in local
mode.

If a procedure will be executed within DC/UCF, it should not contain statements
that would interfere with or are prohibited in the that environment. For example
DISPLAY statements in COBOL and getmain requests in Assembler should be
avoided. Follow the rules specified in the appropriate DML referenced guide
when coding your procedure.

Transaction
Management

Rununits and SQL transactions opened within a procedure are automatically
managed as part of the invoking SQL session’s transaction. This means that if a
commit work is issued by the invoking application, all subordinate transactions
opened by procedures are also committed. Similarly, if the invoking SQL
session is rolled out, all subordinate transactions are also rolled out.

Although a procedure is free to terminate its own transactions independently
from the invoking SQL session, it should do so only if it made no changes to the
database.

When the invoking SQL transaction is terminated, either through a commit or
rollback operation, it has the following affect on procedures:

■ All open scans are closed

■ All database transactions (SQL or non-SQL) started by the procedure are
either committed or rolled out and the corresponding sessions are
terminated

■ All procedure work areas are freed

When the invoking SQL transaction is committed through a commit continue
operation, the only affect on procedures is that database changes made by the
procedure are committed.

Suspend/Resume If an SQL session which invokes a procedure is suspended, the procedure is
also suspended. This means the following:

■ Rununits and SQL sessions started by the procedure are suspended

11–10 Installation and Operations Guide

Special Considerations

■ Database changes made by the procedure (whether through SQL or native
DML) are neither committed nor rolled out; instead the records remain
locked and the changes will either be committed or rolled out when the
invoking SQL session is committed or rolled out

■ The work area associated with the procedure is saved

In most cases, no special action is required of the procedure during a suspend
operation. The procedure will be called once for each open scan that exists at the
time the session is suspended. If the procedure has acquired some temporary
storage, it may need to save its contents somewhere else (such as in kept storage
or in a scratch area) that will be preserved across a pseudo-converse; otherwise,
the procedure may ignore suspend scan requests.

Similarly, the procedure may ignore resume scan requests unless it needs to
restore a temporary storage area. The first request to a procedure after a resume
will be a Resume Scan if the request involves a scan that was previously
suspended. If the request does not involve a previously suspended scan, the
procedure may not even be aware that a suspend and resume has occurred. The
contents of the procedure’s work area will be the same as it was before the
suspend and any rununits or SQL sessions previously started by the procedure
will automatically be resumed on the next database request.

Error Handling The procedure is provided with two arguments to signal an exception
condition back to CA-IDMS. These arguments consist of a 5-character code
known as SQLSTATE and an 80-byte message area. The valid SQLSTATE
values and their meanings are shown in the following table:

SQLSTATE Value Meaning

00000 Request was successful

01Hxx Request was successful but the procedure
generated a warning message

02000 No more rows to be returned

38xxx The procedure has detected an error during
processing

CA-IDMS examines the SQLSTATE value to determine whether the operation
was successful or not. In the case of either an error or a warning, it embeds the
message text returned by the procedure in a standard DB message and returns it
to the calling application through the message area of the SQLCA. It also
translates the SQLSTATE value into an SQLCODE value as follows:

SQLSTATE SQLCODE

00000 0

Using Table Procedures 11–11

Special Considerations

01Hxx 1

02000 100

38xxx -4

In the event an error is raised by the procedure, CA-IDMS automatically rolls out
all database changes made by the procedure while processing the SQL statement
that caused the procedure to be invoked. For example, if the invoking SQL
statement was a searched update and ten rows had been updated before the
error was detected, changes to all ten rows are rolled out automatically.
Database changes made prior to the execution of the searched update statement
are not rolled out.

Datetime Parameters If a table procedure is defined to have a parameter whose data type is date,
time, or timestamp, the values passed to and from the procedure are in the 8-
byte internal datetime format. This means that in order to interpret incoming
parameters, the procedure must first convert them to external format using
either the IDMSIN01 subroutine or the #XTRA macro. Similarly, before
returning a datetime parameter value, the procedure must convert the external
format to the internal format again using either IDMSIN01 or #XTRA.

To avoid this, date/time parameters may be defined using a character data type
which may then be converted to a date, time, or timestamp using the cast
function. However, this method relies on the invoking application or end-user
for specifying the cast operation and on the procedure for doing the datetime
validation on update and insert values.

Transaction Mode The transaction mode of an SQL session which invokes a procedure is
propagated to the subordinate transactions started by the procedure. This
means that if the procedure starts an SQL session, its default transaction mode
will be the same as the transaction mode associated with the invoking
transaction. If the procedure instead binds a rununit and the transaction mode
of the invoking SQL transaction is read only, all update ready modes will
automatically be converted to shared retrieval. The net result is that a table
procedure invoked by a transaction in a read only state, will not be able to
update the database.

11–12 Installation and Operations Guide

Appendix

A Logical Symbols and IIPARM Clist

EDBC server and gateway behavior is controlled by logical symbols that are
specified when EDBC is started. The IIPARM DD statement determines which
logical symbols are used. In the batch environment (batch job or started task),
IIPARM can point to a sequential data set or a member of a PDS.

In the foreground (TSO), the IIPARM clist supplied in the
EDBC.V2R3.FILES.CLIST data set is used to specify the member of a PDS
containing the logical symbols to be used for the session. The
EDBC.V2R3.FILES.IIPARM data set contains default logical symbol members
that are created from user stage1 macro specifications.

Logical Symbol Library Organization
The Logical Symbol library has the default name EDBC.V2R3.FILES.IIPARM. This
library contains members that are used for different purposes. These members are:

■ ISVRxxxx member

Logical symbols to initialize or access an EDBC server. This member is
created from user stage1 macro specifications.

■ SABExxxx member

The CA-IDMS gateway can be invoked independently of the gateway server.
In other words, the CA-IDMS gateway can be run as a batch job or under
TSO, even though the gateway server is not started. This mode of operation
is called Stand Alone Back End (SABE) and is determined by the logical
ING_MODE. Specifying ING_MODE=NOSERVER; will enable the
CA-IDMS gateway to be invoked independently of the gateway server.
Specifying ING_MODE=SERVER; indicates that the batch job or TSO user
will interface to the CA-IDMS gateway through the gateway server and thus
requires that the gateway server be started. In addition to the ING_MODE
logical, several other logicals are required to run in Stand Alone Back End
mode. These logicals are generated and stored in library
EDBC.V2R3.FILES.IIPARM as member SABEDEMO by the stage2
installation process.

Logical Symbols and IIPARM Clist A–1

Logical Name Format

■ Uxxxxxxx member

These members contain the same type of logical symbols as those in the
SABExxxx member, with which they can be interchanged.

The advantage of this set of members is that you can customize up to seven
characters of the member name, as opposed to only four characters of the
SABExxxx member set.

Logical Name Format
The gateway uses logical names to configure many operational parameters.
These logicals have the following syntax:
LOGICAL_NAME = 'value';

You can customize logicals by editing the text that appears to the right of the
equals (=) sign. Each record in a logical file may be:

■ Blank

■ An assignment, using the syntax:
LOGICAL_NAME = 'value';

where the value is expressed as a string or a number, depending on the
logical name. Enclose string values in single or double quotes. Each logical
name assignment must end with a semicolon.

■ A comment, delineated by /* and */

■ An assignment followed by a comment

Detailed Descriptions of Logical Symbols
This section describes the logical symbols you can configure. A logical symbol
can be specified more than once. If this happens, the system uses the last
occurrence of that logical symbol. Logical symbols are grouped into several
members. This section describes the symbols that are contained in each of the
following members:

■ ISVREDBC: Server logical symbols

■ SABExxxx: Stand-alone back end logical symbols

A–2 Installation and Operations Guide

Detailed Descriptions of Logical Symbols

ISVREDBC Logical Symbol Members

These logical symbols are used to initialize the gateway server and to provide
access to that server from a remote client, a batch, or a TSO address space. The
IIPARM Clist also uses these logical symbols in conjunction with symbols in the
DBNMEDBC and SABExxxx members.

IDMS_CI_OPTION The IDMS_CI_OPTION logical symbol enables you to append CA-IDMS-
specific parameters to the create index statement. The form of this option is:
IDMS_CI_OPTION = 'IN segment.areaname '

IDMS_CT_OPTION The IDMS_CT_OPTION logical symbol enables you to append CA-IDMS-
specific parameters to the create table statement. The form of this option is:
IDMS_CT_OPTION = 'IN segment.areaname '

IDMS_DECIMAL_AS_
CHAR

IDMS_DECIMAL_AS_CHAR can be used to direct the gateway to return
decimal data as character format instead of float format. (The gateway does not
directly support decimal.) For example:
IDMS_DECIMAL_AS_CHAR = 'YES';

This example will return decimal/numeric fields in character format with a
decimal point if the scale of the field is non-zero. A minus sign will precede the
field if it was negative. The overall length of the data returned will be equal to
the precision of the field plus 2 (sign + decimal (even if none)).

Select DBMSINFO('decimal_as_char') will return an ON/OFF value to show the
state of the logical.

Set decimal_as_char on/off can be used to have the gateway alter the iimapping
table to the appropriate values. If in the off condition, iimapping will indicate
that the returned fields are float. The on condition will cause iimapping to be set
to return char for these fields. (IIMAPPING is used when IICOLUMNS is
accessed for things such as HELP TABLE processing.)

This set needs only be used once to alter the IIMAPPING table.

The user should be consistent in the use of this logical and the values in
IIMAPPING. A choice should be made as to which way to have decimal data
returned. If the choice is CHAR, then set the logical as above and issue the SET.
Otherwise, the default of FLOAT, which is consistent with previous gateway
releases, will be used.

IDMS_DEFAULT_
DBNAME

This logical symbol specifies the default dbname to be connected to during the
gateway installation. The form of this option is:
IDMS_DEFAULT_DBNAME = 'EDCSQL';

Logical Symbols and IIPARM Clist A–3

Detailed Descriptions of Logical Symbols

A–4 Installation and Operations Guide

output_year = input_year + next_century
 else
output_year = input_year + current_century

IDMS_HOT_CONNECT This logical symbol specifies whether a hot connection is to be established with
CA-IDMS during EDBC server initialization. The valid values are YES and NO.
For example:
IDMS_HOT_CONNECT = 'YES';

Hot connections to CA-IDMS can also be started by the ACTivate operator
command.

GW_TRACE_INIT The GW_TRACE_INIT logical symbol specifies which gateway trace items are
to be written to the IIGWTR output file. For example:
GW_TRACE_INIT='IBOBEXRSER';

where the values are:

IB—inbound messages
OB—outbound messages
EX—SQL executions
RS—SQL results
ER—error conditions
ME—memory manipulations
DA—SQLDA data items
TR—trace results

This logical can produce lots of output. You can use the Terminal Monitor
command as follows to control tracing:
set trace all|list of items

II_DATE_CENTURY_
BOUNDARY

In the gateway, the year defaults to the current year. In formats that include
delimiters (such as forward slashes or dashes), you can specify the last two
digits in the year; the first two digits default to the current century (1900). For
example, if you enter 03/21/93 using the format mm/dd/yyyy, the gateway
assumes that you are referring to March 21, 1993. This behavior forces the user
to specify all 4 digits of the year when dealing with dates in the next century.

The II_DATE_CENTURY_BOUNDARY logical symbol allows you to change this
default. It contains an integer that has a value between 0 and 100 inclusive. If this
logical symbol is set, and if the setting is in the valid range, then the century will
be determined by the following calculation:
if (current_year < boundary)
 if (input_year < boundary)
output_year = input_year + current_century
 else
output_year = input_year + previous_century
else
 if (input_year < boundary)

Detailed Descriptions of Logical Symbols

Thus:

II-DATE-CENTURY-BOUNDARY= ‘93’;

Then an input date of 03/31/93 will be treated as March 21, 1993. However, an
input date of 03/21/03 will be treated as March 21, 2003.

II_DBMS_LOG This specifies the location of the DBMS error log. The value can be either a
ddname or a dsname.

■ ddname

If a ddname is given as the value, it is in the form DD:ddname where ddname
is the value of a data definition (DD) statement that was included in the
gateway server JCL.

■ dsname

If a dsname is given as a value, it is in the form dataset.name where dataset.name
is the fully qualified name of an existing sequential data set. This data set will
be dynamically allocated and used to log database management system errors.
An example is:
II_DBMS_LOG = 'DD:IIERLOG';

II_DBTMPL This specifies the name of the non-relational gateway database template
directory. This symbol must be entered exactly as shown:
II_DBTMPLT = 'ING_AREA:DB.iicore';

II_FILES This specifies the OS/390 data set prefix of the various gateway installation
data sets. If this symbol is not defined, then the gateway will concatenate the
value of the SYS_INGRES logical symbol with the character string .FILES to
create the data set prefix. An example is:
II_FILES = 'EDBC.V2R3.FILES';

II_FORCE_TMOUTINT This specifies the number of minutes of inactivity, following an attempted user
disconnect, an operator inactivate, or an inactivate user timeout, that the system
will wait before forcing the user connection down if it still exists. This is similar
to the inactive user timeout facility but is a second-stage more severe form of a
“kill.”

The default is 5 minutes. An example is:
II_FORCE_TMOUTINT = 5;

II_FORMFILE This specifies a front-end parameter that defines the location of cached forms
files. An example is:
II_FORMFILE = 'EDBC.V2R3.FILES.RTIFORMS.FNX';

Logical Symbols and IIPARM Clist A–5

Detailed Descriptions of Logical Symbols

II_GCC_ID This specifies the OS/390 subsystem name that is used by the gateway address
space. This value must match the value of the II_GCN_ID symbol. An example
is:
II_GCC_ID = EDBC;

II_GCCI1_LOG This specifies the location of the gateway communications server error log. The
value given can be either a ddname or a dsname.

■ ddname

If a ddname is given as a value, it will be of the form DD:ddname where ddname
is the value of a data definition (DD) statement that was included in the EDBC
server JCL.

■ dsname

If a dsname is given as a value, it will be of the form dataset.name where
dataset.name is the fully qualified name of an existing sequential data set. This data
set will be dynamically allocated and used to log communication server errors.

If the II_INSTALLATION symbol has a value other than II, then this logical
symbol will have the characters II replaced by the new specification. An
example is:
II_GCCI1_LOG = 'DD: IIERLOG’;

II_GCN_ID This specifies the OS/390 subsystem name that is used by the gateway name
server. This value must match the value of the II_GCC_ID symbol. An example
is:
II_GCN_ID = EDBC;

II_GCNI1_LOG This specifies the location of the gateway name server error log. The value
given can be either a ddname or a dsname.

■ ddname

If a ddname is given as a value, it will be of the form DD: ddname where
ddname is the value of a data definition statement (DD) that was included in
the EDBC server JCL.

■ dsname

If a dsname is given as a value, it will be of the form dataset.name where
dataset.name is the fully qualified name of an existing sequential data set.

This data set will be dynamically allocated and used to log communication
server errors. If the II_INSTALLATION symbol has a value other than II,
then this logical symbol will have the characters II replaced by the new
specification. An example is:

A–6 Installation and Operations Guide

II_GCNI1_LOG = 'DD: IIERLOG’;

Detailed Descriptions of Logical Symbols

Logical Symbols and IIPARM Clist A–7

LU62 PIPE.

II_GCNI1_LCL_VNODE This specifies the virtual node name of the gateway Comm server. It is used by
the name server to determine whether a remote connection or local connection
is desired. If it is not present, the name server will always attempt a remote
connection. If it is present, the name server compares the requested virtual
node to this value. If there is a match then the gateway is started locally in the
TSO or batch address space. If the II_INSTALLATION symbol specifies a value
other than I1, then the symbol’s name must be changed accordingly. An
example is:
II_GCNI1_LCL_VNODE = EDBC;

II_GCNI1_SVR_TYPE This specifies the default server class that will be used during a connection
process if a server class is not given in the connect statement. The valid values
are:

■ DCOM—specifies the default server class, the CA-Datacom/DB gateway.

■ DB2—specifies the default server class, the DB2 gateway.

■ IDMS—specifies the default server class, the CA-IDMS gateway.

■ IMS—specifies the default server class, the IMS gateway.

■ VSAM—specifies the default server class, the VSAM gateway.

■ VANT—specifies the default server class, the Vantage gateway.

II_GENERIC_ERROR The gateway maps CA-IDMS-specific errors to a series of generic errors. This
mapping scheme makes application-error-handling portable across different
gateway products and platforms.

The valid values are YES and NO. If the logical symbol is defined as YES, when
the gateway detects an error in the SQL statement execution, it returns the
following:

■ OpenSQL Generic Error Code

■ CA-IDMS Error Code

If the logical is defined as NO, the Data Manager returns the standard error
messages. An example is:
II_GENERIC_ERROR = YES;

II_HELPDIR This specifies the data set that contains the Terminal Monitor help files. The
help files are members of the data set with the default name
EDBC.V2R3.FILES.HLP, which was part of the installation tape. An example is:
II_HELPDIR = "PDS:'EDBC.V2R3.FILES.HLP'";

II_IDMSLU62_ACB This logical symbol supplies the VTAM ACB name to use for the CA-IDMS

Detailed Descriptions of Logical Symbols

A–8 Installation and Operations Guide

normally used:
II_GCCii_LOGLVL
II_GCCii_ERRLVL

For example:
II_IDMSLU62_ACB = 'IDMSSY11';

This logical is set by default by the IGWFIDMS ACB= parameter.

II_IDMSLU62_
LOGMODE

This logical symbol supplies the VTAM LOGMODE entry to use for the
CA-IDMS LU62 PIPE.

For example:
II_IDMSLU62_LOGMODE = 'APPC02A';

This logical is set by default by the IGWFIDMS DLOGMODE= parameter.

II_IDMSLU62_TASKID This logical symbol supplies the task code to be passed by the gateway to
CA-IDMS for invoking the gateway transaction.

For example:
II_IDMSLU62_TASKID = 'RSPD';

This logical is set by default by the IGWFIDMS TASKID= parameter.

II_INACTV_TMOUTINT This specifies the number of minutes of inactivity after which user threads are
timed out. User threads that may be “hung” as a result of users breaking out of
front-end applications (for example, pressing PA1 in TSO) are automatically
released after the specified timeout. Security is enhanced because unattended
sessions are automatically logged out. Gateway threads and resources are freed
up.

If the parameter is not specified, or if it is set to zero, the timeout facility is not
activated—that is, no automatic timeouts will occur. If you specify the parameter
but do not assign it a value, it defaults to 0. An example is:
II_INACTV_TMOUTINT = 0;

II_INSTALLATION This specifies the 2-character code that is the gateway installation ID. The
default value for this code is I1. It must be unique for each gateway server
address space.

This 2-character code appears in the following logical symbols:
II_GCCii_LOG
II_GCNii_LCL_VNODE
II_GCCii_SVR_TYPE

where ii is the value specified in the II_INSTALLATION symbol.

This installation code can also appear in several logical symbols that are not

Detailed Descriptions of Logical Symbols

This installation code, along with the value of the II_FILES logical symbol, is
used to create the OS/390 data set names that comprise the name server
database.

These files are:

EDBC.V2R3.FILES.NAME.IICOMSVR.ii
EDBC.V2R3.FILES.NAME.IIDB2.ii
EDBC.V2R3.FILES.NAME.IIIMS.ii
EDBC.V2R3.FILES.NAME.IIVSAM.ii
EDBC.V2R3.FILES.NAME.IIEDBC.ii
EDBC.V2R3.FILES.NAME.IILOGIN.ii
EDBC.V2R3.FILES.NAME.IINODE.ii
EDBC.V2R3.FILES.NAME.IIVSAM.ii

where ii is the value of the II_INSTALLATION logical symbol.

An example of the default entry is:
II_INSTALLATION = I1;

II_NET_LMOD This logical symbol specifies the name of the IIPSERV (protocol server) load
module to use for EDBC initialization. The default value is IIPSERV.
II_NET_LMOD = ‘IIPSERV’;

II_NO_ENQ_SUBSYS This specifies that the gateway be invoked within the EDBC address space. It
must be specified as follows:
II_NO_ENQ_SUBSYS = YES;

II_PIPE_IDMSLU62 This logical symbol specifies whether the CA-IDMS LU62 PIPE is to be
activated during Net server initialization. The valid initialization values are
YES and NO.

For example:
II_PIPE_IDMSLU62 = 'YES';

The CA-IDMS LU62 PIPE can also be started by the ACTivate operator
command.

II_PROTOCOL_CCI The valid values are YES and NO. If the logical number is defined as YES, it
specifies that the installation is using the CCI protocol for OS/390 to OS/390
communications. An example is:

II_PROTOCOL_CCI = YES;

Logical Symbols and IIPARM Clist A–9

Detailed Descriptions of Logical Symbols

II_PROTOCOL_
RESTART_COUNT

The number of times the EDBC server should attempt to restart a protocol
driver after a protocol driver failure. The valid values are 0-10. Default is 0.

II_PROTOCOL_SNA_
LU0

The valid values are YES and NO. If the logical symbol is defined as YES, it
specifies that the installation is using the SNA LU0 protocol for
communications between the IBM and the remote EDBC system. An example
is:
II_PROTOCOL_SNA_LU0 = YES;

II_PROTOCOL_SNA_
LU62

The valid values are YES and NO. If the logical symbol is defined as YES, it
specifies that the installation is using the SNA LU62 protocol for
communications between the IBM and the remote EDBC system. An example
is:
II_PROTOCOL_SNA_LU62 = YES;

II_PROTOCOL_TCP_
IBM

The valid values are YES and NO. If the logical symbol is defined as YES, it
specifies that the installation is using the IBM TCP/IP protocol for
communications between the IBM and the remote EDBC system. An example
is:
II_PROTOCOL_TCP_IBM = YES;

II_PROTOCOL_TCP_
IBM_BUFSIZE

The IBM TCP/IP packet size in kilobytes. Valid values are 4-32. Default is 8. An
example is:

II_PROTOCOL_TCP_IBM_BUFSIZE = 16;

II_PROTOCOL_TCP_
KNET

The valid values are YES and NO. If the logical symbol is defined as YES, it
specifies that the installation is using the KNET TCP/IP protocol for
communications between the IBM and the remote EDBC system. An example
is:
II_PROTOCOL_TCP_KNET = YES;

II_PROTOCOL_TCP_
SNS

The valid values are YES and NO. YES specifies that the installation is using the
Interlink SNS/TCP protocol for communications between OS/390 and the
remote EDBC system. An example is:
II_PROTOCOL_TCP_SNS = YES;

II_PROTOCOL_TCP_
SNS_BUFSIZE

The SNS TCP/IP packet size in kilobytes. Valid values are 4-32. Default is 8. An
example is:

II_PROTOCOL_TCP_SNS_BUFSIZE = 16;

A–10 Installation and Operations Guide

Detailed Descriptions of Logical Symbols

Logical Symbols and IIPARM Clist A–11

II_TIMEZONE
and the local time zone where the gateway server is running. If this logical is
not specified, it defaults to 0. An example is:

II_PSF_POOL This specifies the number of 4 KB pages that should be allocated to the Parser
Facility (PSF). This parameter should be set to 30 to support Microsoft Access
and Visual Basic clients. If this value is set too low, clients receive message
“E_RD0001 Not enough memory for RDF temporary work area”. The default
value is 25 4 KB pages. An example of the default entry is:
II_PSF_POOL = 25;

II_QEP_SIZE This specifies the maximum memory used by the Query Execution Facility
(QEF) to build data segment headers. The Query Execution Facility manages
and executes query plans of non-relational gateway products, and contains the
information required by QEF to execute the query. The default is 3072 bytes.
An example is:
II_QEP_SIZE = 3072;

II_RECALL This logical symbol specifies whether the gateway server should retrieve any
archived data sets, through an exit, prior to completing its initialization. The
sample JCL to compile and link IIRECALL exit is in
EDBC.V2R3.SAMPLE.CNTL (ASMRCALL).

The valid values are YES and NO. If the logical symbol is defined as YES, it
invokes the IIRECALL exit.

Note: The IIRECALL exit must be compiled and linked into
EDBC.V2R3.BACK.LOAD using sample JCL.

II_SECURITY This specifies the type of OS/390 host security used by the gateway server. The
values that can be specified are CA-ACF2, RACF, CA-TSS, or NONE. An
example is:
II_SECURITY = RACF;

If no value or an invalid value is specified, then the default is NONE.

II_SMFID This specifies the value of the SMF record number that will be generated
during the writing of user accounting records. This value should always be set
to 0. If this value is 0, it disables the writing of SMF records. If a value is given
that falls between 128 and 255 inclusive, then an SMF accounting record is
written using this record ID.

Note: This function has not been enabled for the current release of the gateway
products. This information is provided for planning purposes. An example is:
II_SMFID = 0;

This specifies the difference in hours between Greenwich Mean Time (GMT)

Detailed Descriptions of Logical Symbols

II_TIMEZONE = 7;

II_UTEXE_DEF This specifies the location of front-end initialization parameters. This file must
be allocated and available during execution of gateway user interfaces on
OS/390. It is distributed as an empty file. It is recommended that the symbol be
entered as follows:
II_UTEXE_DEF = "'EDBC.V2R3.FILES.UTEXE.DEF'";

ING_MODE This specifies the execution mode for gateway programs. There are two values
that are normally used. These are:
■ SERVER

This specifies that the gateway initializes in server mode. It is used in the
following circumstances:

– EDBC initialization

 Used when the EDBC address space is initializing.

– Local front-end access from TSO or Batch

 Used when a front end wishes to locally access the gateway server
address space. Needed by utilities such as iinamu and netu to access the
gateway name server.

■ NOSERVER

This specifies that the gateway initializes in no-server mode. It is used in the
following circumstances:

– CREATPR processing.

 This mode is set in the SABExxxx member of the logical symbol library
for formatting and initializing database areas and partitions.

– TSO or Batch access to the non-relational gateway products.

 This mode is set if single-user access to the non-relational gateway
products is desired.

The following shows the value that is specified in the ISVRxxxx member for this
symbol.
ING_MODE = SERVER;

LOCK_LISTS This specifies an internal non-relational gateway parameter. It must be entered
as follows:
LOCK_LISTS = 2047;

LOCK_MAX This specifies an internal non-relational gateway parameter. It must be entered
as follows:
LOCK_MAX = 32768;

A–12 Installation and Operations Guide

Detailed Descriptions of Logical Symbols

LOCK_RESTAB This specifies an internal non-relational gateway parameter.

It must be entered as follows:
LOCK_RESTAB = 2047;

LOCK_TABSIZE This specifies an internal non-relational gateway parameter. It must be entered
as follows:
LOCK_TABSIZE = 2047;

LOG_CPINTVL This specifies an internal non-relational gateway parameter. It must be entered
as follows:
LOCK_CPINTVL = 4;

LOG_SBLKS This specifies an internal non-relational gateway parameter. It must be entered
as follows:
LOCK_SBLKS = 48;

MAX_LOCKS This specifies an internal non-relational gateway parameter. It must be entered
as follows:
MAX_LOCKS = 350;

SRV_MAXSERVERS This specifies the number of gateway utility sub-tasks that will be created to
perform functions required by the gateway server. This number should be set
equal to at least the number of 370 central processors on OS/390. The default
value is:
SRV_MAXSERVERS = 4;

SRV_MAXTHREADS This specifies the maximum number of concurrent threads that the gateway
address space can support. The system reserves the first 16 threads for its own
use. Each local connection requires a single thread. Each remote connection
requires a single thread. Thus, specify the maximum number of expected
connections plus 16 to arrive at this value. The default value of 64 will allow 48
concurrent user connections to be established. The default value is:
SRV_MAXTHREADS = 64;

SRV_STKSIZE This specifies an internal gateway parameter. Specify this value exactly as
follows:
SRV_STKSIZE = 48;

SRV_TMOUTINT This specifies the interval in seconds that the timeout server will check for
timed-out lock requests or hung protocol driver sessions. Values between 1 and
10 are valid; the default is 10 seconds.

Logical Symbols and IIPARM Clist A–13

SRV_TMOUTINT = 10;

Detailed Descriptions of Logical Symbols

SYS_INGRES This specifies the gateway data set prefix for installation files. The default value
is:
SYS_INGRES = 'EDBC.V2R3';

SABExxxx or Unnnnnnn Logical Symbol Member

This member is created for each unique database area that is to be formatted and
accessed. This member is concatenated after the ISVREDBC (or equivalent)
member and specifies access to a specific area. You must use this member when
running the createpr utility. It is also required when accessing the non-relational
gateway from TSO or as a batch job.

II_DBMS_SERVER This parameter is required when accessing the non-relational gateway in
single-user mode. It contains the OS/390 subsystem name. An example is:
II_DBMS_SERVER = EDBC;

ING_MODE This parameter specifies that the gateway is to run in single user mode. It must
be entered exactly as follows:
ING_MODE = NOSERVER;

Optional Logical Symbols

There are a number of logical symbols that are not normally used during the
operation of the gateway. It is possible to specify these logicals to modify the
behavior of the gateway. This section describes some of these logicals.

II_GCCI1_LOGLVL This symbol specifies the level of logging to be performed. The value that is
specified determines what is placed in the public log. The public log is
identified by the logical symbol II_GCCI1_LOG.

The values that can be specified are 0, 4 and 6. Their meanings are:

■ 0: Silent (log nothing)

■ 4: Log the following:

– GCC START/STOP status messages

– Fatal GCC errors that cause the GCC process to stop

– Connection-specific errors (that break a specific connection).

■ 6: Same as 4, but also log connection setup and termination messages for the
application layer and the transport layer.

A–14 Installation and Operations Guide

This value will default to the equivalent specification. An example is:

IIPARM Clist Description

II_GCCI1_LOGLVL = 4;

II_GCCI1_ERRLVL This symbol specifies the level of error logging to be performed. The value
given is a threshold. If a value of 0 is given, then no error logging will be done.
If a value of 4 is given, then error messages with assigned levels of 0 through 4
will be logged.The default value is 4 (log all messages). An example is:
II_GCCI1_ERRLVL = 4;

II_GW_ERRLVL This symbol specifies the level of error logging to be performed. The value
given is a threshold. If a value of 0 is given, then error with assigned level 0 will
be logged. If a value of 3 is given, then error messages with assigned levels of 0
through 3 will be logged. The default value is 4 (log all messages). An example
is:
II_GW_ERRLVL = 4;

IIPARM Clist Description
The IIPARM Clist works in conjunction with the logical symbol library to
configure the correct logical symbols to access the gateway. This Clist is used by
the IGWFDBA utilities. This Clist allocates the following files, which are
necessary for the execution of the gateway under TSO:

■ IIPARM: The gateway server logical symbol file, which consists of one or
more concatenated data sets

■ IIERLOG: EDBC server messages

■ IIVDBLOG: verifydb message log

■ IIGWTR: Gateway messages

■ PRINTQRY: Contains all SQL queries when the command set printqry is
issued

Logical Symbols and IIPARM Clist A–15

IIPARM Clist Description

Description of IIPARM Parameters

The permissible parameters are used to dynamically configure the allocation
sequence of the IIPARM file. The acceptable parameters are as follows:

Parameter Description

ISVR() Sets default server access symbol member. If not null, it
will be appended to ISVR and concatenated to IIPARM
allocation.

DBNM() Sets database location symbols. If not null, it will be
appended to DBNM and concatenated to IIPARM
allocation.

ERLOG() Specifies the IIERLOG allocation status. Can have one
of three values:

■ ERLOG (DUMMY)—Specifies that IIERLOG will be
allocated as a dummy data set. This is the default
value.

■ ERLOG (*)—Specifies that IIERLOG will be
allocated to the TSO terminal.

ERLOG(dsname) Specifies that IIERLOG will be allocated to a predefined
data set. If name is not in quotes, then TSO will prefix
the name with the value of the TSO user prefix.

VDBLOG() Specifies the IIVDBLOG allocation status. Can have one
of three values:

■ VDBLOG (dummy)—Specifies that IIVDBLOG be
allocated as a dummy data set. This is the default
value.

■ VDBLOG (*)—Specifies that IIVDBLOG be
allocated to the TSO terminal.

■ VDBLOG (dsname)—Specifies that IIVDBLOG be
allocated to a predefined data set. If dsname is not
in quotes, then TSO will prefix the name with the
value of the TSO user prefix.

SABE Sets logical symbols to access a specific gateway
database area and sort work data set. The symbol name
has this form:

SABEnnnn

A–16 Installation and Operations Guide

IIPARM Clist Description

Logical Symbols and IIPARM Clist A–17

The IIPARM Clist is customized during the IIVP stage2 jobstream execution. The
ISVR (), PREFIX (), and STOGRP () parameters have defaults. The resulting Clist
is placed in EDBC.V2R3.FILES.CLIST.

Parameter Description

USER Sets logical symbols to access a specific gateway
database area and sort work data set. The symbol name
has this form:

Unnnnnnn

FREE Frees all previously allocated files by filename.

HELP Shows this output.

DEBUG Shows internal execution of IIPARM Clist.

INSRV() Sets the gateway server access symbol member. This
parameter is similar to the ISVR(). Unlike ISVR (), this
parameter allows an explicit member that contains the
server initialization parameters to be specified. It is
primarily used by the IGWFDBA utility.

AREA() Sets the gateway area symbol member. This parameter
is similar to the USER () and SABE () parameters.
However, unlike the other parameters, this parameter
allows the full member name to be specified. It is
primarily used by the IGWFDBA utility.

SILENT Suppresses messages displayed when the IIPARM Clist
executes. When this parameter is specified, no
notification messages are displayed. It is primarily used
by the IGWFDBA utility.

STOGRP() Specifies that the Storage Group Catalog data set is to
be allocated as the IISTOGRP ddname. The allowed
values are:

■ YES—Allocates the IISTOGRP and IISTOLOG
catalogs. If this value is specified, then the
IISTOGRP ddname is allocated using the default
data set name EDBC.V2R3.FILES.IISTOGRP and
the IISTOLOG ddname is allocated using the
default data set name
EDBC.V2R3.FILES.IISTOLOG.

■ NO—Allocates the IISTOGRP and IISTOLOG
catalogs as dummy data sets.

IIPARM Customization

IIPARM Clist Description

This data set is a fixed-block data set with an LRECL of 80. You should be able to
access the IIPARM member with the SYSPROC ddname. If so, the defaults are
consistent with the installation-specific naming conventions.

Examples of IIPARM Use

After you have copied this Clist into the production Clist libraries and
customized it, you can use it to allocate the logical symbol file. The HELP option
describes its functions. The following provides two examples of how this Clist is
used. This discussion assumes that the logical symbol file has been configured
and the Clist is being accessed from TSO.

Example 1 Set up the environment to access the gateway Comm server using the following
command:
%iiparm isvr(edbc)

This allocates the IIPARM file to provide access to the EDBC server that was
started using the parameters in the ISVREDBC member in the logical symbol file.

The following messages will appear on the TSO console:
IIPARM IIPARM DSN = 'EDBC.V2R3.FILES.IIPARM'
IIPARM IIPARM MBR = 'ISVREDBC'
IIPARM ALL FILES ALLOCATED SUCCESSFULLY

Example 2 Set up the environment to access the database areas for EDCUSR1. This step
assumes that member UEDCUSR1 in the logical symbol library has been
customized.
%iiparm isvr(edbc) user(edcusr1)

This allocates all files to allow access to the VSAM gateway from TSO. This user
will use the database area that will be allocated by the gateway exclusively, for
the duration of the connection.

The following messages appear on the TSO console:
IIPARM IIPARM DSN = 'EDBC.V2R3.FILES.IIPARM'
IIPARM IIPARM MBR = 'ISVREDBC'
IIPARM IIPARM MBR = 'UEDCUSR1'
IIPARM ALL FILES ALLOCATED SUCCESSFULLY

A–18 Installation and Operations Guide

Customization B–1

modification or if the IIACF load module is not present in the
EDBC.V2R3.BACK.LOAD library.

Appendix

B Customization

During stage1 of the installation, you provide site-specific information. As
described in the installation procedure, this information is used to configure the
IIVP stage2 jobstream. In addition, the site-specific information is used to
customize several JCL members that are used to customize the EDBC server,
thereby reducing the editing required before a sample JCL member can be used.

During the IIVP stage2 phase, the following datasets are customized with this
site-specific information:

■ EDBC.V2R3.SAMPLE.CNTL

■ EDBC.V2R3.FILES.PROCLIB

■ EDBC.V2R3.FILES.CLIST

This JCL can be submitted without any changes, but it is advisable to review it
before execution.

The tables below list the JCL and its functions. The IINAMEI1, STARTI1, and
EDBCI1 JCL are listed as they would be named with the default installation
code, I1.

EDBC.V2R3.SAMPLE.CNTL
The SAMPLE.CNTL partitioned dataset contains JCL that can be used to
customize various components of the EDBC server:

JCL Title Function Description

ASMACF2 CA-ACF2 exit Customizes the CA-ACF2 security exit, IIACF. Compiles the
source member IIACF2 in the dataset with the default name:

EDBC.V2R3.FILES.ASM

This JCL is required only if the CA-ACF2 security exit requires

EDBC.V2R3.SAMPLE.CNTL

JCL Title Function Description

ASMPSERV IIPSERV module Re-links the IIPSERV load module that contains the protocol
server initialization parameters for all installed protocol servers.

You do not need to execute this JCL after the IIVP stage2 has
executed successfully. Use this JCL to make changes, if
required.

ASMRACF RACF exit Customizes the RACF security exit, IIRACF. Compiles the
source member IIRACF in the dataset with the default name:

EDBC.V2R3.FILES.ASM

This JCL is required only if the RACF security exit is modified.

ASMRCALL Data Archive
Retrieval exit

Customizes the Archive Retrieval exit. Compiles and link edits
the source member IIRECALL in the dataset with the default
name:

ASMRMODE Sample VTAM
SNA logmode table

Contains VTAM MODEENT statements defining the VTAM
mode tables if SNA_LU0 or SNA_LU62 protocols have been
selected.

ASMTSS CA-TSS exit Customizes the CA-TSS security exit, IITSS. Compiles the
source member IITSS in the dataset with the default name:

EDBC.V2R3.FILES.ASM

This JCL is required only if the CA-TSS security exit is
modified.

IGWFCOPY Copy IGWF
modules from
BACK.LOAD to
LINKLIST

JCL to copy IGWF subsystem modules into a LINKLIST library.

IGWFXSSD Initializes the IGWF
subsystem

JCL to dynamically initialize the IGWF subsystem.

IGWFZAP Refresh and/or
map IGWF
subsystem modules

JCL to dynamically refresh and/or map IGWF subsystem
modules.

IIARCHIV HSM sample recall
exit

Tests the IIRECALL exit without bringing up a EDBC server.
This job invokes the IIRECALL exit, produces a report, and then
shuts down.

IICLEAN Recover from a
RC=20 abend of
the EDBC server

This JCL should be submitted when the EDBC server
terminates with a RC=20 during server installation.

B–2 Installation and Operations Guide

IIGTFSQL Read GTF trace Invokes the IIGTFSQL utility.

EDBC.V2R3.SAMPLE.CNTL

JCL Title Function Description

IINAMEI1 Name server file
allocation JCL

Can be used to explicitly allocate the name server files needed
by the EDBC server. The files that this jobstream allocates are
listed below with their default names:

EDBC.V2R3.FILES.NAME.IICOMSRV.I1

EDBC.V2R3.FILES.NAME.IIDB2.I1

EDBC.V2R3.FILES.NAME.IIIMS.I1

EDBC.V2R3.FILES.NAME.IIINGRES.I1

EDBC.V2R3.FILES.NAME.IILOGIN.I1

EDBC.V2R3.FILES.NAME.IINODE.I1

EDBC.V2R3.FILES.NAME.IIVSAM.I1

If you execute this JCL, you must recreate any definitions
entered in the netu utility. The iiname utility does not need to
be run.

EDBCEDBC Server batch JCL Starts the server as a batch job using in-stream JCL.

RTIAPPL Sample VTAM
SNA APPL
definition

Contains the VTAM APPL statements defining the VTAM
application node names if SNA_LU0 or SNA_LU62 protocols
are selected.

STARTI1 Gateway server
batch JCL

Allows the EDBC server to be submitted as a batch job.
Assumes that the EDBCI1 member in the gateway PROCLIB
has been copied to an installation user PROCLIB.

UPD01PSB
catalog

Update the
IIGW01PSB catalog

JCL to update the VSAM partition processing options.

Customization B–3

EDBC.V2R3.FILES.CLIST

EDBC.V2R3.FILES.CLIST
The EDBC.V2R3.FILES.CLIST partitioned dataset contains customized
procedures required by the EDBC server:

JCL Title Function Description

IIPARM Set up access to
gateway from TSO

Customizes the EDBC.V2R3.FILES.CLIST Clist by the IIVP
stage2 process to provide the correct defaults for the
following parameters:

■ ISVR—This parameter is customized with the correct
value for the OS/390 subsystem value specified in the
IIVP stage1 by the IGWFINET SUBSYS= parameter.

■ PREFIX—This parameter is customized with the correct
value for the OS/390 dataset prefix value specified in
the IIVP stage1 by the IGWFBLD PREFIX= parameter.

This Clist should be used to allocate the logical symbols
needed to access the EDBC server from a batch or TSO job.
The Clist library is assumed to be FB/80.

EDBC.V2R3.FILES.PROCLIB
The EDBC.V2R3.FILES.PROCLIB dataset contains procedures that are used by
OS/390 TSO or batch users of the EDBC server:

JCL title Function Description

EDBCI1 Customization EDBC
server cataloged
procedure

Used to start the EDBC server as a started task or batch job.
Should be copied to an installation user proclib.

B–4 Installation and Operations Guide

Appendix

C Multiple Central Version Support

When the CA-IDMS cross memory interface is utilized, a single EDBC server can
interface to multiple CA-IDMS Central Versions and/or multiple segments
within a Central Version.

This interface is described in detail in the introduction in the "Working with
CA-IDMS-Data" chapter. A single EDBC server can support a maximum of 50
CVs and/or segments. All the CVs must reside on the same LPAR. CVs can be at
different release levels (minimum release level 12.1).

Central Version Number
The Central Version Number is the key component in the design and
implementation of multiple CV/segment support. It is used in combination with
the dbname to direct queries to the proper CV. It is also used to set runtime
logicals that enable the CA-IDMS gateway to operate properly in different CV
environments.

Installation Procedure
The installation procedure for the EDBC server for IDMS establishes an interface
to a single primary CV. Support for additional secondary CV(s) is activated by
performing the following post-installation tasks:

1. Install the EDBC CA-IDMS gateway system catalogs into the target
CV/segment.

If the catalogs are already installed, go to Step 2.

a. Copy and rename the customized stage1 input (IGWFSTGS) used for the
install of the EDBC server/IDMS gateway.

Multiple Central Version Support C–1

Installation Procedure

b. Edit the renamed IGWFSTGS and make the following changes:

 IGWFJOB

Change the JOBNAME= parameter so that existing members of
STAGE2.CNTL are not replaced by the stage1 assembly performed
in the next step.

 IGWFUSER

Add/delete IGWFUSER entries as appropriate.

 IGWFIDMS

Set INSTALL = NEW and modify the CV-related parameters as
required.

c. Perform a stage1 assembly using the renamed IGWFSTGS.

d. Run stage2 jobs S0 thru S2.

2. Add and define the cross-memory modules to the secondary CV being
activated.

a. Run stage2 job S4 created in Step 1 or the S4 job used for the install of the
primary CV interface (make a copy and change the SYSLMOD and
IDMSLIB libraries).

b. Perform an IDMS SYSGEN, incorporating the definitions created by the
S4 job.

3. Add the following logical symbols to the ISVR member of IIPARM:

Required Logicals

IDMS_CV_DBNAME_x = ‘yyyyyyyy’;

or

IDMS_CV_DBNAME_x = ‘CVnnn_yyyyyyyy’;

where:
x = Relative dbname number (from 1 to a maximum of 50)
nnn = Central Version CV number
yyyyyyyy = 1 to 8 character segment name

Example: IDMS_CV_DBNAME_2 = ‘CV183_PRODDB1’;

Note: CVnnn need only be specified if the target CV number is different
from that of the default CV number (see below).

C–2 Installation and Operations Guide

Installation Procedure

IDMS_DEFAULT_CVNUM = ‘nnn’;

where:
nnn = CV number to direct a connect request if the CV number is not
 specified as part of the dbname

Example: IDMS_DEFAULT_CVNUM = ‘182’;

Optional Logicals

 dbname_CT_OPTION =
dbname_CI_OPTION =
dbname_SYSTEM_OWNER =
dbname_SECSGON =

 where:
dbname = the value specified in the IDMS_CV_dbname_x logical

Example: CV183_PRODDB1_SYSTEM_OWNER = ‘$EDBC’;

Note: These logicals only need to be added if the values differ from the
values of the “primary” CV (IDMS). For example, if the SYSTEM_OWNER
for CV183_PRODDB1 is $EDBC and IDMS_SYSTEM_OWNER = ‘$EDBC’,
then the logical CV183_PRODDB1_SYSTEM_OWNER does not need to be
specified.

4. Recycle the CV and the EDBC server.

5. Connect to the activated “secondary” CV from a remote client.

Multiple Central Version Support C–3

Appendix

D Installing Multiple Gateways

The EDBC installation procedure supports the installing of multiple gateways in
a single stage1/stage2 run. To install multiple gateways perform the following:

1. Download the files from the product tape as outlined in “Installing the
Gateway” chapter.

2. Edit member IGWFSTGA in library EDBC.V2R3.FILES.ASM and make the
following changes:

a. The stage1 input statements for all the gateways are included in
IGWFSTGA. Delete or comment out the statements for the gateways
which are not being installed.

b. Customize the stage1 input for the remaining gateway entries (see the
Customizing the Stage1 Input section of the "Installing the Gateway"
chapter of the appropriate EDBC Installation and Operations Guide).

c. Modify the PRODUCTS= operand of the IGWFBLD statement. Delete
the product codes for gateways that are not being installed.

3. Run stage1.

Customize and submit member IGWFSTGA of library
EDBC.V2R3.SAMPLE.CNTL.

4. Run stage2.

Submit jobs in library EDBC.V2R3.SAMPLE.CNTL (see the Submitting the
Stage2 Jobstream Jobs section of the "Installing the Gateway" chapter of the
appropriate EDBC Installation and Operations Guide).

5. Perform the final installation and verification procedures as described in the
"Installing the Gateway" chapter of the appropriate EDBC Installation and
Operations Guide.

Installing Multiple Gateways D–1

 Index

A

abend codes and messages
CCI, 6-10
SNA LU0, 6-3

Access
data, 3-2
gateways, 3-2
to data, 7-1
to gateways, 7-9
to multiple databases, 8-4
to table procedures, 11-3
to tables, 8-5, 8-8

activate (command), 7-5

Active threads, 7-6

Activity display, 7-8

Address space
CA-IDMS, 3-4, 3-7
communication, 3-3
connecting to server, 7-14
dumping, 7-6
EDBC, 3-3, 3-6
gateway, 3-2, 4-3, 5-27
opening tables in, 7-3
running in, 7-1
TSO, 7-14
user, 3-6, 4-4

Allocating
and loading datasets, 5-5
database files, 5-34

Alternate translation tables, 6-18

APF
authorization and database procedures, 9-22

optimizing performance, 10-1
porting, 2-3, 8-10, 8-11, 8-12
programs used as database procedures, 9-1

Architecture
EDBC, 3-2

Assembler
database procedures, 9-21
programs, 11-5
table procedures, 11-10

Authorization ID, 7-9

autocommit on (mode), 8-17

B

Backing up files, 5-5

C

CA-ACF2, 6-14, B-1

CA-IDMS
address space, 3-4

Cascade parameter, 8-10

Catalogs, 5-36

CA-Top Secret Security facility (CA-TSS), 6-15, B-2

CCI
abend codes and messages, 6-10

CCI for OS/390, 6-9

Central Version, 3-1, 8-1
multiple support, C-1
number, C-1

 Index–1

APF list, 5-41

Applications

Central Version Number, C-1

Character data type, 8-15, 8-17

Index–2 Installation and Operations Guide

defining, 5-11
functions, 7-1
requirements, 4-4
tasks, 7-1

CICS
EXCI, 9-27

Clients
creating RACF profile, 6-13
described, 2-4

Cloning
EDBC server to different LPAR, 7-14

COBOL programs, 11-5

Coding database procedures, 9-22

Coding table procedures, 11-5

Comm Server thread, 3-4

Commands
defined, 1-2
delimiters, 7-4

commit (statement), 8-5, 8-10, 8-17

Communication
address space, 3-3
protocol requirement, 4-2
server, 3-4

connect (statement), 8-4

Connecting
server to DBMS, 7-3
server to server, 7-14
to Central Version, 8-2
to gateway tables, 8-7
to multiple databases, 8-4

Conventions, 1-2

Conversion errors, 10-7

Converting data types, 8-15

create
table (statement), 8-5, 8-6
table as select (statement), 8-5

Creating databases, 5-35

Creating tables, 8-4

CREATPR processing mode, A-12

Cross memory service programs
installing, 5-37

Cylinders required, 5-5

D

Data
access, 3-2, 7-1
conversion, 8-15
management, 7-1
non-SQL processed as relational, 11-1
working with, 8-1

Data set
prefix, specifying logical, A-5, A-14

Data sets
archived, A-11

Data types
character, 8-15
conversion errors, 10-7
date, 8-14, 8-15
float, 8-15
integer, 8-15
mapping, 8-15
money, 8-15
smallint, 8-15
varchar, 8-15
with OpenSQL, 8-14

Database
connecting to, 8-3, 8-4
creating, 5-35
default location, 8-5, 8-6
distributed, 2-5
initializing, 5-35
multiple, 8-4
overview, 8-1
procedures, 9-1, 11-1
sample, 4-4, 4-6, 5-11, 5-37
user, 5-37

Dataset
default prefix, 5-6

Datasets
allocated by stage0, 5-8
allocating and loading, 5-5

Date data type, 8-14, 8-16, 8-17

Datetime parameters, 11-12

DBA
access to objects, 8-8
creating tables, 8-7

Debugging, 10-5 return codes, 10-6
semantics, 10-6

 Index–3

data type conversion, 10-7
handling, 10-4
in table procedures, 11-11

Global Communications Architecture (GCA), 2-2

Greenwich mean time, 6-17, 8-14

Decimal data type, 8-16

Default database location, 8-5, 8-6

Definitions, creating, 5-16, 5-35, 5-40

Dependent logical unit, 6-5

direct execute immediate (statement), 8-5, 8-12, 8-13,
10-2, 10-6

Disk storage, 4-3

display active threads (command), 7-6

Distributed databases, 2-5

Documentation conventions, 1-2

drop table (statement), 8-10

Dropping
database procedures, 9-26

Dropping tables, 8-10

dump (command), 7-6

Dynamic statement execution, 10-4

E

EDBC, 5-3
address space, 3-3, 3-6
architecture, 3-2
described, 2-4

EDBC server
cloning, 7-14
starting, 5-41

Embedded OpenSQL, 8-4

Ending transactions, 11-10

Environment independence, 11-10

Error log
name server, A-6
specifying level, A-15
specifying location, A-5, A-6

Errors
and database procedures, 9-3
CA-IDMS mapping to the gateway, A-7

syntax, 10-6

EXCI
database procedures, 9-27
interface parameters, 5-27

execute
procedure (statement), 9-25

execute immediate (statement), 10-2

Executing
a statement dynamically, 10-4
database procedures, 9-25
procedures in batch, 11-10

Execution mode, specifying, A-12

explain (command), 10-1

Extensions to OpenSQL, 8-12, 10-3

F

Float data type, 8-15, 8-16, 8-17

Force inactivate timeout, 6-17

Forms file, specifying logical location, A-5

G

gateways
installing multiple, D-1

Gateways
access, 3-2
components, 2-2
described, 2-1, 3-1
features of, 2-3
functions, 3-1
installing, 4-6
invoking with Net, A-9
maintaining, 7-1
presenting additional objects to user, 7-10
subsystem, 5-41
threads, 3-4
upgrading, 5-16

Index–4 Installation and Operations Guide

II_DATE_CENTURY_BOUNDARY logical, 6-18, A-4

II_DBMS_LOG logical, A-5

II_PROTOCOL_TCP_SNS_BUFSIZE logical, A-10

II_PSF_POOL logical, A-11

H

Hardware requirements, 4-2

help (command), 7-6

Hot connect function, 7-3

I

IBM TCP/IP
specifying logical, A-10

IBM TCP/IP for OS/390
configuration, 6-7

IDMS_CI_OPTION logical, A-3

IDMS_CT_OPTION logical, 8-6, A-3

IDMS_DEFAULT_DBNAME logical, A-3

IGWFBLD statement, 5-29

IGWFIDMS statement, 5-14

IGWFINET statement, 5-12

IGWFJOB statement, 5-9

IGWFPIPE statement, 5-25, 5-27

IGWFPSVR statement, 5-21

IGWFSTGS member, 5-9, 5-31

IGWFUSER statement, 5-11

IGWFVPA0 job, 5-34

IGWFVPF0 job, 9-26

IGWFVPI0 job, 5-38

IGWFVPN0 job, 5-39

IGWFVPP0 job, 5-40

IGWFVPS0 job, 5-34

IGWFVPS1 job, 5-35

IGWFVPS2 job, 5-36

IGWFVPS3 job, 5-37

IGWFVPS4 job, 5-37

IGWFVPZ9 job, 5-41

II_DBMS_SERVER logical, A-14

II_DBTMPLT logical, A-5

II_FILES logical, A-5

II_FORCE_TMOUTINT logical, 6-17, A-5

II_FORMFILE logical, A-5

II_GCC_ID logical, A-6

II_GCCI1_ERRLVL logical, A-15

II_GCCI1_LOG logical, A-6

II_GCCI1_LOGLVL logical, A-14

II_GCN_ID logical, A-6

II_GCNI1_LCL_VNODE logical, A-7

II_GCNI1_LOG logical, A-6

II_GCNI1_SVR_TYPE logical, A-7

II_GENERIC_ERROR logical, A-7

II_GW_ERRLVL logical, A-15

II_HELPDIR logical, A-7

II_IDMSLU62_ACB logical, A-7

II_IDMSLU62_LOGMODE
logical, A-8

II_IDMSLU62_TASKID logical, A-8

II_INACTV_TMOUTINT logical, 6-17, A-8

II_INSTALLATION logical, A-8

II_NET_LMOD logical, A-9

II_NO_ENQ_SUBSYS logical, A-9

II_PIPE_IDM SLU62 logical, A-9

II_PROTOCOL_CCI logical, A-9

II_PROTOCOL_RESTART_COUNT logical, A-10

II_PROTOCOL_SNA_LU0 logical, A-10

II_PROTOCOL_SNA_LU62 logical, A-10

II_PROTOCOL_TCP_IBM logical, A-10

II_PROTOCOL_TCP_IBM_BUFSIZE logical, A-10

II_PROTOCOL_TCP_KNET logical, A-10

II_PROTOCOL_TCP_SNS logical, A-10

II_QEP_SIZE logical, A-11

II_RECALL logical, A-11

II_SECURITY logical, 6-13, 6-15, 6-16, A-11

II_SMFID logical, A-11

II_TIMEZONE logical, 6-17, A-11

II_UTEXE_DEF logical, A-12

IIACF security exit, B-1

IIPARM
customization, A-17
examples, A-18
for tracing, 10-7
parameters, A-15

IIRACF security exit, B-2

IIRECALL exit, B-2

IISTAGE1 member, 5-31

IITSS security exit, B-2

IIVP
creating additional server, 7-11
customizing input, 5-9
overview, 5-1

IIVP stage0 jobstream
customizing, 5-6
datasets allocated by, 5-8
restoring, 5-5

IIVP stage1 jobstream
example, 5-31
summary, 5-9

IIVP stage2 jobstream
building, 5-29
listing, 5-33
results of, 5-4
submitting, 5-33

inactivate (command), 7-5

Inactive user timeout
displaying parameter value, 7-9
forcing, 6-17
specifying logical, A-8

Independent logical unit, 6-5

INET, 5-41

ING_MODE logical, A-12, A-14

installation
multiple gateways, D-1

Installation
allocating and loading datasets, 5-5
CA-ACF2, 6-14
CA-Top Secret Security facility, 6-15
code, A-8
IBM TCP/IP, 6-7
interface to primary CV, C-1
interface to secondary CV(s), C-1
KNET TCP/IP, 6-6
OS/390 subsystems required, 5-3
overview, 4-6
RACF, 6-13
requirements, 4-2
SNA LU0, 6-1
SNA LU62, 6-4
summary, 4-6, 5-1
verification, 5-42

Integer data type, 8-15, 8-17

IPL, timing of, 5-4, 5-42

ISO Entry SQL92 compliance, 1-2

ISVR member, A-1

ISVREDBC logical symbol members, A-3

J

JCL for sample databases, 5-4, 5-41

Jobcard parameters, 5-9

K

KNET TCP/IP
requirements, 6-6
specifying logical, A-10

KNET TCP/IP for OS/390
support, 6-6

L

 Index–5

ING_SET logical, 8-17

Input parameters for table procedures, 11-3

Local
access, 3-5

connections, 8-3
mode, 2-4, 11-10

II_PROTOCOL_CCI, A-9
II_PROTOCOL_RESTART_COUNT, A-10

Index–6 Installation and Operations Guide

II_NET_LMOD, A-9
II_NO_ENQ_SUBSYS, A-9
II_PIPE_IDM SLU62, A-9

Mapping of data types, 8-15

MAX_LOCKS logical, A-13

Local access
CA-IDMS address space, 3-7
EDBC address space, 3-6
user address space, 3-6

Local time zones, 6-17

LOCK_LISTS logical, A-12

LOCK_MAX logical, A-12

LOCK_RESTAB logical, A-13

LOCK_TABSIZE logical, A-13

Locks, 8-10, 8-17

LOG_CPINTVL logical, A-13

LOG_SBLKS logical, A-13

Logging, specifying level of, A-14

Logical
II_RECALL, A-11

Logical
IDMS_CI_OPTION, A-3
IDMS_CT_OPTION, 8-6, A-3
IDMS_DEFAULT_DBNAME, A-3
II_DATE_CENTURY_BOUNDARY, A-4
II_DBMS_LOG, A-5
II_DBMS_SERVER, A-14
II_DBTMPLT, A-5
II_FILES, A-5
II_FORCE_TMOUTINT, 6-17
II_FORMFILE, A-5
II_GCC_ID, A-6
II_GCCI1_ERRLVL, A-15
II_GCCI1_LOG, A-6
II_GCCI1_LOGLVL, A-14
II_GCN_ID, A-6
II_GCNI1_LCL_VNODE, A-7
II_GCNI1_LOG, A-6
II_GCNI1_SVR_TYPE, A-7
II_GENERIC_ERROR, A-7
II_GW_ERRLVL, A-15
II_HELPDIR, A-7
II_IDMSLU62_ACB, A-7
II_IDMSLU62_LOGMODE, A-8
II_IDMSLU62_TASKID, A-8
II_INACTV_TMOUTINT, 6-17, A-8
II_INSTALLATION, A-8

II_PROTOCOL_SNA_LU0, A-10
II_PROTOCOL_SNA_LU62, A-10
II_PROTOCOL_TCP_IBM, A-10
II_PROTOCOL_TCP_IBM_BUFSIZE, A-10
II_PROTOCOL_TCP_KNET, A-10
II_PROTOCOL_TCP_SNS, A-10
II_PROTOCOL_TCP_SNS_BUFSIZE, A-10
II_PSF_POOL, A-11
II_QEP_SIZE, A-11
II_SECURITY, 6-13, 6-15, 6-16, A-11
II_SMFID, A-11
II_TIMEZONE, 6-17, A-11
II_UTEXE_DEF, A-12
ING_MODE, A-12, A-14
ING_SET, 8-17
LOCK_LISTS, A-12
LOCK_MAX, A-12
LOCK_RESTAB, A-13
LOCK_TABSIZE, A-13
LOG_CPINTVL, A-13
LOG_SBLKS, A-13
MAX_LOCKS, A-13
SABExxxx, A-14
SRV_MAXSERVERS, A-13
SRV_MAXTHREADS, A-13
SRV_STKSIZE, A-13
SRV_TMOUTINT, 6-17, A-13
SYS_INGRES, A-14

Logical symbols
customizing, 5-34, A-2
descriptions, A-2
for tracing, 10-7
GW_TRACE_INIT, A-4
IDMS_DECIMAL_AS_CHAR, A-3
IDMS_HOT_CONNECT, A-4
library, A-1
syntax, A-2

Logical units, 6-5

LPAR
cloning EDBC server to, 7-14

LU62 PIPE, 5-40

M

Message text, 11-6 O

 Index–7

Null values, 5-9

Numeric data type, 8-15 Populating catalogs, 5-36

Privileges

Messages
mode, 9-1

Modes
of access, 2-4, 11-10
of database procedure operation, 9-1
transaction, 11-12

modify (command), 7-4

Money data type, 8-15

Multiple Central Version Support, C-1

Multiple databases, 8-4

multiple gateways
installing, D-1

N

Name server
bypassing, 3-6
files, 5-31, B-3
function of, 3-4

Name server files
creating, 5-39

Net
customizing parameters, 5-38
I/O, 7-8
initializing, 5-41
server, 3-4
specifying logical virtual node, A-7
specifying parameters, 5-12

netu (utility)
configuring server as client, 7-15
establishing remote authorization, 6-13, 6-14, 6-16

No server mode, A-12

Non-default database area, 8-6

Non-relational
gateways, 2-1
parameter, A-12, A-13, A-14

Non-SQL data processed, 11-1

notrace (command), 7-6

Objects
additional gateway, 7-10

OpenSQL
and application portability, 8-10, 8-11
data types, 8-14
described, 2-6
extensions, 8-12, 10-3
restrictions, 8-11
translated, 3-1

Optimizing performance, 10-1

order by (clause), 8-15

OS/390
access to resources, 4-5
commands, 7-4
IPL, 5-42
libraries, 4-5
requirements, 4-2
resetting, 10-8
specifying logical, A-5
subsystem name, A-6
utilities, 4-5

OSI standard, 3-3

Overhead optimization, 10-2

Overriding server logicals, 8-3

Owner, schema, 8-5

P

Parameters
cascade, 8-10
customizing, 5-38
datetime, 11-12
for table procedures, 11-3
SABE, 3-6
specifying, 5-12

Performance optimization, 10-1

Permission to access tables, 8-5

Permissions, 9-24

PL /I programs, 11-5

to access tables, 8-8
to create tables, 8-5

Row, returned, 11-5

Index–8 Installation and Operations Guide

return_text parameter, 9-3

return_value parameter, 9-3

timeout, A-13

Service programs, cross memory, 5-37

Product tape, 5-4

Protocol server
activate, 7-5
function of, 3-3
inactivate, 7-5
specifying parameters, 5-21
tracing, 7-6

Q

Queries
handling, 3-4, 10-2
repeated, 10-4

Query languages, 1-2

R

RACF, 6-12, B-2

register procedure (statement), 9-23

Registering database procedures, 9-23

Reinstalling, 5-16

Relational
gateways, 2-1
processing of non-SQL data, 11-1

Remote
access, 3-3
connections, 8-3
mode, 2-4

Remote access
CA-IDMS address space, 3-4
communication address space, 3-3
EDBC address space, 3-3

remove procedure (statement), 9-26

Repeated queries, 10-4

Restrictions to OpenSQL, 8-11

Return codes, 9-3, 10-6, 10-8

S

SABE
member, A-1, A-14
parameter, 3-6

Sample databases, 4-4, 4-6, 5-11, 5-37

Schema owner, 8-5

Security
facilities, 6-12
inactive user timeout feature, 6-17
specifying type of, A-11
supported systems, 2-5, 4-2

Security interfaces
enabling, 6-12
testing, 6-12

Select
mode, 9-1

Select loops, 10-3

Semantic errors, 10-6

Sense code, 6-6

Server
address space dumping, 7-6
address space requirements, 4-3
class, 8-3
cloning to different LPAR, 7-14
Communication, 3-4
configuring, 7-14
connecting to DBMS, 7-3
connecting two, 7-14
creating an additional, 7-11
creating RACF profile, 6-13
customizing, B-1
described, 2-4
maintaining address space, 7-4
mode, A-12
multiple gateways, 3-4
name, 5-39
Net, 3-4
overriding logicals, 8-3
specifying default class, A-7
starting as a batch job, 7-3

Single-user mode, A-14 libraries, 4-5
utilities, 4-5

 Index–9

SYS_INGRES logical, A-14

System
catalogs, 3-1, 3-7, 8-1

address space, 7-14
logon procedure, 5-42, 7-10

Smallint data type, 8-15, 8-17

SMF record number, A-11

SNA LU0
abend codes and messages, 6-3
specifying logical, A-10

SNA LU0 for OS/390
configuration, 6-1

SNA LU62
specifying logical, A-10

SNA LU62 for OS/390
configuration, 6-4

SNS/TCP, 6-11

Software requirements, 4-2

SQL
DML statements, 11-1
limitations, 8-10

SQLCA, 10-5

SQLDA, 9-2

SRV_MAXSERVERS logical, A-13

SRV_MAXTHREADS logical, A-13

SRV_STKSIZE logical, A-13

SRV_TMOUTINT logical, 6-17, A-13

Stand-Alone Back-End. See SABE

Star, 2-3, 2-5

Starting
server as batch job, 7-3

Statements, 1-2

Stopping gateway server, 7-2

Storage requirements, 4-3, 5-5

Structured Query Language (SQL), 2-6

Support
multiple central version, C-1

Syntax
documentation conventions, 1-3
errors, 10-5, 10-6
to connect to database, 8-3

T

Tables
access privileges, 8-5
accessing, 8-7
alternate translation, 6-18
creating, 8-4, 8-7
creation privileges, 8-5
dropping, 8-10
names, 8-7
procedures, 9-1, 11-1

Template directory, specifying logical name, A-5

Terminal monitor
help files, A-7
using, 8-17

Terminology, documentation conventions, 1-2

Threads
active, 7-6, 7-9
cancelled, 7-5, 7-7
concurrent, A-13
gateway, 3-4
idle, 7-8
maximum, 7-9

Time
data type, 8-14, 8-16, 8-17

Time zones
local, 6-17

Timeout
force inactivate, 6-17
preventing, 8-17
server, A-13

trace (command), 7-6

Tracing, 10-7

Transaction
management, 11-10
mode, 11-12

Troubleshooting, 7-6

TSO
access to, 7-9

U

U member, A-2

Upgrading, 5-16

User
accessing objects, 8-8
adding, 7-9
address space, 3-6, 4-4
creating entries for, 5-11
database, 5-37
ID, 7-5
inactivate context, 7-5
specifying, 5-11
supporting, 4-7

User interfaces
Embedded OpenSQL Preprocessor for C, 3-6
Embedded OpenSQL Preprocessor for PL/I, 3-6
initializing logical, A-12
supported, 2-6
Terminal Monitor, 3-6
version required, 4-2

Utilities
defined, 1-2
logical, A-13
referenced, 4-5

V

Varchar data type, 8-15, 8-17

Verifying
database procedures, 9-26
functionality, 4-7
installation, 5-42

VTAM
configuration, 6-6
SNA APPL definition, B-3

W

where (clause), 8-15

with (clause), 8-3, 8-6, 8-12

Y

Year 2000 support, 6-18

Index–10 Installation and Operations Guide

	Advantage EDBC for CA-IDMS Installation and Operations Guide
	Contents
	Chapter 1: Introduction
	In This Guide
	Audience
	Conventions

	Chapter 2: Overview of EDBC for CA-IDMS
	The EDBC Solution
	A Gateway Installation
	The CA-IDMS Gateway
	EDBC Server
	Ingres/Star
	Security System Support
	User Interfaces
	Structured Query Language (SQL)

	Chapter 3: Gateway Function and Architecture
	Gateway Functions and Structure
	Gateway Functions
	EDBC Architecture
	Remote Access
	Communication Address Space

	EDBC Address Space
	CA-IDMS Address Space

	Local Access
	User Address Space
	EDBC Address Space
	CA-IDMS Address Space

	Gateway System Catalogs

	Chapter 4: Preparing for Installation
	Before Beginning the Installation
	Software Requirements
	Storage Requirements
	Disk Storage
	Virtual Storage Requirements
	User Address Space

	Installer’s Requirements
	Installer’s Access to Resources
	Installation Overview
	Installation Summary
	Installing the Gateway
	Verifying Gateway Functionality
	Supporting Gateway Users

	Chapter 5: Installing the Gateway
	Installation Summary
	Installation Framework
	Installation Expectations
	The EDBC Product Tape
	Backing Up Previous Installation Datasets

	Allocating and Loading the Installation Datasets
	Creating JCL to Restore the Stage0 Jobstream
	Customizing the Stage0 Installation Jobstream
	Gateway Datasets That Are Allocated and Restored

	Customizing the Stage1 Input
	IGWFJOB Statement: Specifying Jobcard Parameters
	IGWFUSER Statement: Specifying Initial Gateway Users
	IGWFINET Statement: Specifying EDBC Parameters
	IGWFIDMS Statement: Specifying CA-IDMS Gateway Parameters
	IGWFPSVR Statement: Specifying Protocol Server Parameters
	IGWFPIPE Statement: Specifying CA-IDMS LU62 Interface Parameters
	IGWFPIPE Statement: Specifying EXCI Interface Parameters
	IGWFBLD Statement: Specifying IIVP Sysgen Parameters

	The Stage1 Jobstream
	Customizing and Executing the Stage1 Jobstream

	Submitting the Stage2 Jobstream Jobs
	Functions of Stage2 Jobs

	Final Installation Procedures
	Completing the Installation

	Customizing the TSO Logon Procedure
	Verifying the Installation Functionality

	Chapter 6: Configuring the EDBC Server
	Install and Configure Communication Interfaces
	SNA LU0 for OS/390
	Requirements
	Installation and Configuration
	Starting and Stopping the SNA_LU0 Interface
	Connecting from a Remote Client
	SNA LU0 Abend Codes and Messages

	SNA LU62 for OS/390
	Requirements
	Installation and Configuration
	Starting and Stopping the SNA_LU62 Interface
	Connecting from a Remote Client
	SNA LU6.2 VTAM Logmode Entries
	Sense Code 08120007 and Possible Loop in VTAM

	KNET TCP/IP for OS/390
	Requirements
	Installation and Configuration
	Starting and Stopping the TCP_KNET Interface
	Connecting from a Remote Client

	IBM TCP/IP for OS/390
	Requirements
	Installation and Configuration
	Starting and Stopping the TCP_IBM Interface
	Connecting from a Remote Client
	IBM TCP/IP Problem Diagnosis

	CCI for OS/390
	Requirements
	Installation and Configuration
	Starting and Stopping the CCI Interface
	Connecting from a CCI Client
	CCI Abend Codes and Messages

	SNS/TCP for OS/390
	Requirements
	Installation and Configuration
	Starting and Stopping the TCP_SNS Interface
	Connecting from a Remote Client

	Enable and Test Security Interfaces
	IBM Resource Access Control Facility (RACF)
	Installing and Customizing the RACF Interface

	Computer Associates Access Control Facility 2
	Installing and Customizing the CA-ACF2 Interface

	Computer Associates Top Secret Security Facility
	Installing and Customizing the CA-TSS Interface

	Force Inactivate Timeout
	Local Time Zone
	Year 2000 Support

	Alternate Translation Tables

	Chapter 7: Maintaining the Gateway
	Database Management Functions
	Starting and Stopping the EDBC Server
	Starting the EDBC Server as a Started Task
	Stopping the EDBC Server
	Starting the EDBC Server as a Batch Job

	The Gateway Hot Connect Function
	Maintaining the Gateway
	Display Active Command

	Adding a New Gateway User
	Presenting Additional Gateway Objects to a User
	Defining an Additional EDBC Server
	Using IIVP to Create a Second EDBC Server
	Cloning an EDBC Server to a Different LPAR
	Connecting from One EDBC Server to Another
	Verifying the Connection

	Chapter 8: Working with CA-IDMS Data
	The Database in EDBC and in CA-IDMS
	Connecting to CA-IDMS

	Creating Tables in CA-IDMS
	Rules Governing CA-IDMS Tables
	Creating Tables in CA-IDMS Through the Gateway

	Table Names in CA-IDMS and EDBC
	Table Creation by the Gateway DBA

	Accessing Existing Tables and Views in CA-IDMS
	Table Access Privileges

	Access to CA-IDMS Network Definitions and Data
	Dropping Tables Through the Gateway
	SQL and the Gateway
	OpenSQL
	Extensions to OpenSQL
	The With Clause
	The Direct Execute Immediate Statement

	Data Types and Utilities
	Date Support
	CA-IDMS Date and Time Values
	Data Types

	Using the EDBC Terminal Monitor

	Chapter 9: Using Database Procedures
	Database Procedures Defined
	Select Procedures and Message Procedures

	Coding Database Procedures
	Coding Conventions
	Library Considerations
	Procedure Completion

	Input Parameters
	Assembler Macros
	Generated Error Messages
	Other Notes

	Non-Function Call Macros
	DBPPROLG
	DPBREGS
	DBPWORKI
	DBPSQLDI
	DBPEXCI
	DBPEPILI

	Function Call Macros
	ALLOC_MEMORY
	FREE_MEMORY
	END_TRANSACTION
	DEFINE_MESSAGE
	SEND_MESSAGE
	PROC_TRACE
	CALL_EXCI
	SEND_DESCRIPTOR
	SEND_DATA
	GET_VARIABLE
	PUT_VARIABLE
	GET_IDMS_VARIABLES
	PUT_IDMS_VARIABLES

	Data Handling in Assembler
	Implementing Database Procedures
	Assembler Database Procedures

	Coding Database Procedures
	Coding Conventions
	APF Authorization

	Registering Database Procedures
	Register Procedure Statement
	Permissions

	Executing Database Procedures
	Preparing to Execute Procedures
	Execute Procedure Statement
	Select Procedure Statement

	Removing Database Procedures
	Verifying Database Procedures
	Planning for EXCI Database Procedures

	Chapter 10: Optimizing and Troubleshooting
	Optimizing Gateway Applications
	CA-IDMS Optimization
	Gateway Overhead
	Gateway Query Handling
	Other Ways to Increase Gateway Performance

	Error Handling
	CA-IDMS Error Reporting
	Gateway Error Reporting

	Debugging the Gateway
	Syntax Errors
	Incorrect Return Codes
	Incorrect Semantics
	Data Type Errors

	Gateway Traces
	Resetting the OS/390 Subsystem

	Chapter 11: Using Table Procedures
	Table Procedures
	When to Use Table Procedures

	Defining and Using Table Procedures
	Defining a Table Procedure
	Accessing Table Procedures
	Procedure Parameters
	Coding Table Procedures

	Special Considerations
	Environment Independence

	Appendix A: Logical Symbols and IIPARM Clist
	Logical Symbol Library Organization
	Logical Name Format
	Detailed Descriptions of Logical Symbols
	ISVREDBC Logical Symbol Members
	SABExxxx or Unnnnnnn Logical Symbol Member
	Optional Logical Symbols

	IIPARM Clist Description
	Description of IIPARM Parameters
	IIPARM Customization
	Examples of IIPARM Use

	Appendix B: Customization
	EDBC.V2R3.SAMPLE.CNTL
	EDBC.V2R3.FILES.CLIST
	EDBC.V2R3.FILES.PROCLIB

	Appendix C: Multiple Central Version Support
	Central Version Number
	Installation Procedure

	Installing Multiple Gateways
	Index

